
    

 

 Erameh and Osamah (2021). Predictive Modelling of Cutting Force in a Straight Turning Operation. Nigeria 

Journal of Engineering Science Research (NIJESR). 4(1), pp. 34-43    

 

                   

 
Predictive Modelling of Cutting Force in a Straight Turning 

Operation  
  

1* Erameh A. A., 2Osamah E. E.  

 
1Department of Mechanical Engineering, Igbinedion University, Okada, Nigeria  

(erameh.andrew@iuokada.edu.ng)  
 

2Department of Production Engineering, University of Benin, Benin City, Nigeria  
(eze.osamah@eng.uniben.edu)  

 
*Corresponding Author: Erameh A. Andrew, erameh.andrew@iuokada.edu.ng  (+2348036711828) 

 

 

  

 

 

 

 

Keywords: Cutting Force, Design of Experiments, Optimum, Mean Squared Error  

 

 
INTRODUCTION  

 
In all machining operations including turning, energy conversion takes place where the cutting energy 

is transformed into heat which in turn translates to temperature rise in the cutting zone. Heat is 

generated from work done in shearing in the shear zone; friction between the tool and the machined 

surface; and friction at the tool-chip interface. It is important that this temperature increase be 

effectively managed as excessive temperature can have adverse effect on the cutting tool, workpiece or 

both (Kalpakjian and Schmid, 1999). Under ‘dry machining’ and ‘high speed machining’ conditions, 

excessive cutting force and could result in: 

1. reduction in the strength, hardness and wear resistance of the tool 
2. cutting tool softening and subsequent plastic deformation which in effect may alter the shape 

of the tool  
 
Accordingly, the dimensional accuracy of the workpiece could be reduced; thermal and metallurgical 
damages could be passed on to the finished workpiece thereby affecting its in-service properties. 
Cutting force needs to be properly controlled during turning process. Excessive cutting force could 
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Abstract: In this research, a second order polynomial ridge regression model was developed for 

the cutting force in the straight turning of “AISI 1005” steel wherein cutting force was 

regressed on cutting speed, feed rate and depth of cut. Design of experiments was used to reduce 

the number of the experimental runs and provide near-optimum experimental condition. The 

result from the predictive model was compared to the experimental result. The error – in terms 

of the mean absolute error (MAE) and mean squared error (MSE) - from the ridge regression 

model was within acceptable bounds since the value of the prediction was very close to the 

experimental result using a validation data set that is completely different from the development 

data set.  
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cause deflection especially in long and/or slender workpieces. This results in elastic deformation which 
impacts the dimensional accuracy of the finished workpiece. Low cutting force on the other hand may 
not be enough to overcome the shear strength of the workpiece material to produce the desired cutting 
action. Either way the job is not done or is done improperly. The controllable independent variables - 
cutting speed, feed, and depth of cut – tends to influence the cutting force, temperature rise and tool 
life, type of chip formed and surface finish and integrity. The interaction of the input and output 
variables in metal machining is generally very complex. Some reasons for this complexity include but 
not limited to: 
 
i. The large number of variables at play 
ii. Some of the variables are simply outside the control of the machinist or experimenter 
iii. The effect of one independent variable on a depended variable may be confounded by that of 

another independent variable on the same dependent variable. 
 
The mechanical properties (strength, hardness, stiffness and wear-resistance) of the cutting tool are 
affected by the excessive heat at the tool-workpiece interface to the extent that the tool could become 
soft and experience plastic deformation. This in turn reduces the dimensional accuracy of the tool and 
eventually leads to tool failure. So, tool-chip temperature imparts greatly on the rate of tool wear (Usui 
et al., 1978).  According to Endrino et al. (2006), high temperatures at the tool–chip interface increases 
diffusion and chemical wear of both the tool and the workpiece. Using high cutting speed and 
unfavorable condition during machining results in very high temperature (Chattopadhyay and 
Chattopadhyay, 1982; Singh et al., 1997). Plastic deformation of the cutting edge and rapid wear occurs 
at elevated temperature and pressure leading to dimensional inaccuracy, increased cutting forces and 
premature tool failure (List et al., 2005). Higher power is consumed and more heat is generated as the 
cutting force is increased. The resultant tool wear and increased heat can induce change and/or damage 
in the thermal and metallurgical properties of machined surface.  Also, Bouzid et al. (2004) reported 
that flank wear causes an increase in the cutting force and the interfacial temperature, reduction in 
dimensional accuracy in the finished work pieces and vibration which makes the cutting operation less 
efficient. High feed rate/speed inherently generates high cutting zone temperature. Sultana et al. (2009) 
reported that uncoated carbide insert creates more cutting temperature than coated insert when turning 
different steels.   
 
Production economy in turning operation was investigated by Khan and Ahmed (2008) and they found 
that turning difficult-to-cut materials (like Stainless steel, Titanium, Inconel etc.) using existing 
conventional techniques is uneconomical as the turning process results in high tool wear; takes longer 
time and requires high cutting force. While turning these materials, the heat generated was very high 
due to strong adhesion between the tool and workpiece. This is as a result of their low thermal 
conductivity, high work hardening rate, high viscosity, high reactivity, tendency to form built-up-edge 
(BUE) at tool edge compared to other alloy steels. The hardness, plastic modulus and the fracture 
toughness of the tool decline with increase in cutting temperature, which accelerates tool wear rate was 
observed by Reed and Clark (1983). Moreover, thermal stresses in the tool increase with the 
temperature resulting in more cracks in the tool and premature failure of the tool. The amount of energy 
dissipated through the rake face of the tool raises the temperature at the flanks of the tool (Wu and 
Matsumoto, 1990). Ezugwu and Tang (1995) showed that important parameters including the choice of 
tool and coating materials, tool geometry, machining method, cutting speed, feed rate, depth of cut, 
lubrication, must be controlled in order to achieve adequate tool lives and surface integrity of the 
machined surface. In machining a given material, the tool life is governed mainly by the tool material 
which also influences cutting forces and temperature as well as accuracy and finish of the machined 
surface. A common issue with analysing machining operations is the lack of or absence of empirical 
models or equations to aid such analysis. Even when such equations exist, they are too complex and 
analysing them becomes cumbersome and sometimes near-impossible. This research sets out to 
establish a relatively less complex but representative empirical model relating cutting force to depth of 
cut, feed and cutting speed in order to aid the estimation and analysis of cutting force in a straight 
turning operation. 
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MATERIAL AND METHOD  
2.1 Materials 
 
The workpiece material is “AISI 1005” steel. This was chosen because it is a relatively common 
engineering material and it is economical. Another reason for its choice is the dissimilarity in 
mechanical properties with the cutting tool. 

 

Equipment 
i. Machine Tool Dynamometer. This was used to measure the machining force exerted by the 

machine tool on the workpiece during machining operation. 
ii. Cemented Carbide Cutting Tool. Compared to the workpiece material, this cutting tool 

material has much higher resistance to heat and wear and thus ensures that effects of the 
machining operation on the cutting tool will be minimal and almost entirely felt by the 
workpiece. This is consistent with aim which is to model the cutting force on the workpiece as 
functions of feed, depth of cut and cutting speed. 

 

2.2 Method 
Thirty (30) cylindrical workpieces of length L = 50mm were straight turned from an initial diameter D0 
= 20mm to some final diameter Df, with a lathe machine. The input variables, their units and ranges are 
as shown in Table 1. About 83% of the dataset was randomly chosen for training the model while the 
remaining 17% was used for validation. This resulted in 25 data points for training and 5 data points 
for validation. 

        Table-1 Input Variables and their ranges 
 

Variable Unit Range 

Feed mm/rev 0.05 - 0.20 

Depth of cut mm 0.5 - 1.50 

Cutting Speed mm/min 90 - 135 

 
The output variable, cutting force was measured with the dynamometer – attached to the cutting tool - 
and the cutting speed was gotten from the machine spindle speed, N using relation 1 

                    𝑣 =
𝜋𝑁(𝐷0+𝐷𝑓)

2
                                                                                       (1) 

 
A second order polynomial model of the form was fitted to the data set. The choice of whether the 
model will be linear or ridge was determined by the presence of collinearity in the collected data set. 
Collinearity was determined by computing the eigenvalues of matrix X’X and thereafter evaluating the 
condition number given by 

                  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑘(𝑋) = [
𝜆𝑚𝑎𝑥(𝑋′𝑋)

𝜆𝑚𝑖𝑛(𝑋′𝑋)
]

1

2
                                                                                (2) 

Where 𝑋 =

[
 
 
 
𝑥11 𝑥12 … 𝑥13

2

𝑥21 𝑥22 … 𝑥23
2

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛3

2]
 
 
 
, 𝑛 = 25 

 
 
 
A large value of condition number would indicate that there is collinearity among the variables and 
consequently, ridge regression would be a better option to model the system. Having established 
collinearity, the ridge regression; 
  
𝛽 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑦                                                                                            (3) 
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Was fitted to the training set, with k being the shrinkage parameter that ensures that X’X is always 
invertible. Equation (3) was performed on the scaled elements of X using the relation;  
 

 𝑧𝑖𝑗 =
𝑥𝑖𝑗−�̅�𝑗

𝜎𝑥𝑗
2                                                                                                           (4) 

Where 𝑥𝑖𝑗  is the ith element of the jth row of X,  �̅�𝑗 is the mean of the jth column of X and  𝜎𝑥𝑗
2  is the variance 

of jth column of X 
 
Equation (3) becomes; 
 
𝛽 = (𝑍′𝑍 + 𝑘𝐼)−1𝑍′𝑦                                                                                                           (5) 
 
To choose an appropriate value of ridge parameter, a ridge plot of 500 possible values of k made against 
the standardized ridge coefficients to determine a value of k at which the system is stable. Having 
estimated the model parameters, the validation data set was used to ascertain the predictive ability of 
the model. 

 
 

RESULTS AND DISCUSSION 

3.1 Results 

The measured cutting forces from the experiment are as shown in Table 2. 
 

Table -2 Cutting Force Measurements 
 

Depth of Cut (x1) Feed (x2) Cutting Speed (x3) Cutting Force (y) 

0.66 0.18 108.777 100.84 

1.29 0.06 92.2344 68.54 

0.81 0.11 130.6222 75.37 

1.03 0.09 132.5154 77.31 

0.67 0.17 112.0889 95.57 

1.10 0.11 112.0164 106.76 

0.76 0.19 105.1974 120.25 

1.15 0.08 130.5024 75.35 

1.19 0.09 106.6161 90.00 

1.25 0.07 95.0041 75.69 

0.95 0.07 125.1113 56.52 

0.58 0.18 107.5382 88.95 

0.73 0.14 100.8761 84.35 

1.41 0.13 108.176 158.16 

0.65 0.07 94.3405 39.51 

1.33 0.18 95.9388 199.32 

1.04 0.14 132.3923 125.67 

1.49 0.10 133.0261 129.65 
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0.58 0.13 115.8844 62.02 

0.94 0.11 92.6901 87.82 

0.61 0.06 100.5651 31.46 

1.46 0.09 105.8921 106.19 

0.50 0.07 126.9537 29.19 

1.27 0.08 90.6932 83.56 

1.32 0.09 91.9361 95.68 

 
The mean, standard deviation and other summary statistics for the cutting temperature, depth of cut, 
feed and cutting speed are shown in Table 3. 

Table-3 Summary Statistics for Variables 
 

 Depth of Cut Feed Cutting Speed Cutting 
Force 

Count 25 25 25 25 

Mean 0.991752 0.111388 109.9035 90.54968 

STD 0.316255 0.041631 14.66209 37.629902 

Min 0.5046 0.0614 90.6932 29.193995 

25% 0.6656 0.0773 95.9388 75.349199 

50% 1.0285 0.1026 107.5382 87.822283 

75% 1.2749 0.137 125.1113 106.187115 

Max 1.4961 0.1866 133.0261 199.321305 

 
 

A. Determining Collinearity 

The data matrix, X with single, two-factor interaction and quadratic effects. 
 
𝑋 = [𝑥1  𝑥2  𝑥3   𝑥1 𝑥2   𝑥1 𝑥3  𝑥2 𝑥3  𝑥1

2  𝑥2
2  𝑥3

2] 
Computing the eigenvalues of X’X matrix gives  
 

𝜆1,2,…,9 =

[
 
 
 
 
 
 
 
 
4.04𝐸 + 09
35880.63
4196.187
432.186
0.251455
0.020488
0.004402

2.79𝐸 − 05
0.000255 ]

 
 
 
 
 
 
 
 

  

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑘(𝑋′𝑋) =   [
4.04𝐸 + 09

2.79𝐸 − 05
]
0.5

 

= 1.203𝐸 + 07 
 
The very large value of the condition number indicates multicollinearity. Consequently, simple linear 
regression would not be appropriate for modeling the system. Ridge regression is a better candidate 
for modeling this particular system. 
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B. Scaling Variables 
Applying equation 4 to the data set gives the scaled variables shown in Table 4.  
 

Table-4 Scaled Variables 
 

x1 x2 x3 x1 x2 x1 x3 x2 x3 x1
2 x2

2 x3
2 y 

-1.042 1.655 -0.077 0.274 -0.993 1.568 -1.014 1.780 -0.137 0.274 

0.957 -1.170 -1.205 -0.585 0.297 -1.377 0.942 -0.979 -1.144 -0.585 

-0.571 -0.033 1.413 -0.403 -0.069 0.451 -0.667 -0.190 1.446 -0.403 

0.116 -0.538 1.542 -0.352 0.757 -0.097 -0.034 -0.594 1.597 -0.352 

-1.031 1.408 0.149 0.133 -0.923 1.449 -1.007 1.431 0.084 0.133 

0.349 0.080 0.144 0.431 0.407 0.128 0.213 -0.088 0.079 0.431 

-0.723 1.807 -0.321 0.789 -0.769 1.572 -0.787 2.003 -0.369 0.789 

0.513 -0.819 1.405 -0.404 1.148 -0.460 0.399 -0.781 1.437 -0.404 

0.624 -0.523 -0.224 -0.015 0.498 -0.574 0.529 -0.583 -0.278 -0.015 

0.811 -0.951 -1.016 -0.395 0.275 -1.156 0.757 -0.861 -0.987 -0.395 

-0.130 -0.985 1.037 -0.904 0.284 -0.733 -0.279 -0.880 1.020 -0.904 

-1.290 1.658 -0.161 -0.042 -1.245 1.523 -1.168 1.783 -0.218 -0.042 

-0.831 0.615 -0.616 -0.165 -0.952 0.334 -0.867 0.453 -0.639 -0.165 

1.333 0.507 -0.118 1.797 1.209 0.444 1.452 0.336 -0.177 1.797 

-1.073 -0.953 -1.061 -1.356 -1.279 -1.168 -1.034 -0.862 -1.025 -1.356 

1.056 1.600 -0.952 2.891 0.510 1.028 1.073 1.700 -0.933 2.891 

0.147 0.767 1.534 0.933 0.789 1.432 -0.002 0.624 1.587 0.933 

1.595 -0.211 1.577 1.039 2.466 0.298 1.833 -0.342 1.638 1.039 

-1.308 0.375 0.408 -0.758 -1.130 0.526 -1.179 0.199 0.346 -0.758 

-0.155 -0.026 -1.174 -0.072 -0.575 -0.431 -0.302 -0.184 -1.118 -0.072 

-1.218 -1.201 -0.637 -1.570 -1.294 -1.294 -1.125 -0.994 -0.658 -1.570 

1.487 -0.610 -0.274 0.416 1.262 -0.669 1.673 -0.644 -0.325 0.416 

-1.540 -1.030 1.163 -1.631 -1.210 -0.757 -1.305 -0.905 1.160 -1.631 

0.895 -0.812 -1.310 -0.186 0.194 -1.110 0.863 -0.777 -1.229 -0.186 

1.029 -0.610 -1.225 0.136 0.344 -0.925 1.037 -0.644 -1.161 0.136 

 
 
 

C. Choosing Ridge Parameter, k 
 
500 values of the ridge parameter from 0 to 0.005 with interval of 0.00005 were generated and the 
corresponding ridge estimates 𝞫R computed. The plot of the ridge parameters against the standardized 
coefficients is shown in Fig. 1. 
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Fig. 1 Ridge trace of Cutting Force 
 
The system is stable when k is 0. As k increases, the system’s stability reduces. A value of k = 2.5x10 -5 
is small enough not to significantly increases the bias of the system and just large enough to maintain 
low variance and hopefully ensure it generalises well to external data sets. 
 

D. Ridge Regression 
𝛽 = (𝑋′𝑋 + 0.000025𝐼9)

−1𝑋′𝑦1                                                                                   (6) 
 
Solving the above gives, 
  

𝛽 =

[
 
 
 
 
 
 
 
 

2.9374𝐸 − 04
0.0017

−5.4066𝐸 − 04
37.6292

−2.4332𝐸 − 05
−8.4735𝐸 − 04
2.1661𝐸 − 04

−3.1150𝐸 − 04
8.1018𝐸 − 04 ]

 
 
 
 
 
 
 
 

                                                                                                      (7) 

 
Converting the above to the origin variables scale we have, 
 

�̅� = [ 0.9918  0.1114  109.904  0.1072  108.4822  12.2496  1.0796  0.0141  12285] 
𝑠 = [ 0.3163  0.0416  14.6621  0.0446  36.7078  4.6959  0.6323  0.0104  3302.6710] 
�̅� = 90.54968 

𝛽./𝑠 =

[
 
 
 
 
 
 
 
 

0.0009288
0.004

−0.0000336875
844.5940

−0.00000066269
−0.00018045
0.00034259

−0.0301
0.00000024531 ]

 
 
 
 
 
 
 
 

                                                                                            (8) 
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�̅�(𝛽./𝑠) = 90.5501 
(�̅� − �̅�(𝛽./𝑠)  =  90.54968 − 90.5501 = −0.000403995  

𝛽𝑡𝑟 =

[
 
 
 
 
 
 
 
 
 
−4.0400𝐸 − 04
9.2880𝐸 − 04

0.0400
−3.6875𝐸 − 05

844.5940
−6.6290𝐸 − 07
−1.8045𝐸 − 04
3.4259𝐸 − 04

−0.0301
2.4531𝐸 − 07 ]

 
 
 
 
 
 
 
 
 

                                                                                                       (9) 

 
The regression equations become, 

𝑦 = 𝑋

[
 
 
 
 
 
 
 
 
 
−4.0400𝐸 − 04
9.2880𝐸 − 04

0.0400
−3.6875𝐸 − 05

844.5940
−6.6290𝐸 − 07
−1.8045𝐸 − 04
3.4259𝐸 − 04

−0.0301
2.4531𝐸 − 07 ]

 
 
 
 
 
 
 
 
 

                                                                                                         (10) 

 
 

3.2 Discussion  

At least two conditions forces collinearity on the system: physical constraints – due to factor settings or 
ranges; the model specification – from the interactions and second order effects. A third factor has to 
do with the narrow subspace from which the data was collected. The above factors result in inaccurate 
regression coefficient estimates, inflates the standard error of the regression coefficients and degrades 
the prediction capacity of the model among other issues. The ridge regression model aims to minimize 
these concerns and stabilize the model for projection outside the design space. Using the validation 
data set of Table 4.4, matrix X is generated thus, 
 
𝑋 = [𝑥1 𝑥2 𝑥3 𝑥1𝑥2 𝑥1𝑥3 𝑥2𝑥3 𝑥1

2 𝑥2
2 𝑥3

2] 
Applying 5 to X gives the predicted values in the “y predicted” column of Table 5. 

 
Table-5 Validation Data 

 

X1 X2 X3 y 

0.87 0.17 135.56 127.33 

1.24 0.20 135.31 208.96 

0.80 0.13 135.37 90.77 

0.95 0.12 135.80 99.30 

0.59 0.10 135.66 49.00 

 
Table-6 Model Performance 

 

Y Y predicted Error, e e2 |e| 

127.33 127.3272 0.0028 0.00000804 0.002836 

208.96 208.9634 -0.0034 0.00001156 0.003401 

90.77 90.76608 0.0039 0.00001537 0.003920 
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99.30 99.30215 -0.0021 0.00000460 0.002146 

49.00 48.99731 0.0027 0.00000724 0.002690 

 
The value of the ridge parameter k = 0.000025 was sufficient to stabilize the model against variance 
from an external data set and small enough to minimize the bias on the training data set. 
 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟,𝑚𝑠𝑒1 =
∑𝑒1

2

𝑛
=

0.00004681

5
= 0.00000936 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑒1 =
∑|𝑒1|

𝑛
=

0.014992

5
= 0.002998 

 
This is evident from the small magnitude in error, |e| on model validation from Table 6. The model 
specification and parameter tuning have significantly minimized the inherent multicollinearity in the 
data set and has improved the predictability of the model. 

 
  

CONCLUSION  
 

The carefully chosen ridge parameter values for the regression model gave satisfactory results in the 
form of low bias when the models were applied to the experimental data sets. This is evident from the 
performance measure values from the model which returned a mean absolute error value of 0.002998 
and a mean squared error value of 0.00000936. This confirms the low variance of the ridge regression 
model and its predictive ability in the presence of external data.  
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