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INTRODUCTION  

It is of great importance in stress analysis, to consider the combination of stresses and strain that initiate 
yield in a material because the initiation of yield is most times related to the ultimate failure of the 
structure or material (Ross, 1987). The yield criterion is a hypothesis defining the limit of elasticity of 
material under any possible combination of stresses (Chakraberty, 2006; Singh, 2009; Benhan, and 
Warnock, 1980). The theories of yield are related to the triaxial principal stress system, such that, σ1 >

σ2 > σ3. Where σ1 and σ3  are the maximum and minimum principal stress respectively and σ2 is the 
minimax principal stress. According to Ross (1987), the choice of a triaxial principal stress system to 
investigate yield criteria is that such a system describes the complete stress situation at a point, without 
involving the complexities caused by shear stresses on six planes, which would have resulted if a 
different 3-D coordinate system was used. A yield criterion is expressed generally as (Lee, 1977). 
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Abstract: Structural failures occur mostly due to elements that have been stressed beyond their 

ultimate strength and deformed beyond their allowable deflection as a result of applied loads. 

Plate is one of these structures experiencing these failures and leading to economic damages, 

plate analysis is complex unlike other structures and the structural engineer’s aim is to design 

safe and economic structures. Therefore, this study is aimed at formulating a new general yield 

criterion equation or allowable stress equation and specific yield criteria equations or allowable 

stress equations for various thin rectangular plates using polynomial displacement shape 

functions. The strains of an isotropic two-dimensional element are substituted into the strain 

energy per unit volume expression and evaluated to obtain the general yield criterion or 

allowable stress equation in terms of n-value expressions. The displacement shape functions of 

each plate type are evaluated and substituted into the general allowable stress equation to obtain 

the specific allowable stress equation for each plate considered. A numerical application was 

carried out, and th e results indicated that for a safe design, the stress factor of safety should be 

1.10. This has proven to be useful for easy analysis of thin rectangular plates which will save 

economic damages due to plate failures. The new equation will open a new dimension for yield 

analysis that will be beneficial to structural engineers and the Aerospace and Shipbuilding 

industries. 
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f(σm,n, c) = 0.           (1) 

where σm,n stress components, and 'c' are parameters like plastic strains.  In his work, Lee (1977) 

assumed that the plastic behavior of the material is independent of time and temperature, that is, 'c' is 
zero, bringing Eq.1 to an alternative form as  

f(σm,n) = k.                                                                                                                                                                             (2) 

where k represents some yielding parameter, which is constant for the case of initial yielding. While f 
is the yield function that represents a hypersurface to bound all the accessible states which can be 
achieved in actual material elements by some program of stressing (Martin, 1975). The hypersurface 
may be projected into the stress space known as the yield surface by temporarily fixing 'c' as a constant 
at an instantaneous time. There are various theories of elastic failure as stated by Ross (1987). Some of 
these are; the maximum principal stress theory by Rankine, maximum principal strain theory by St. 
Venant, total strain energy theory by Beltrami and Haigh, maximum shear stress theory by Tresca, 
maximum shear strain (distortion) energy theory, and Octahedral shear stress theory both by Hencky 
and Von Mises (or Von Mises).  However, the Tresca and Von Mises yield criteria are mostly used for 
metallic material (Moy, 1981; Ross, 1987; Lee, 1977; Save et al., 1997) because, they considered the fact 
that shear controls yield, and they gave an accurate prediction of the onset of yield in ductile materials. 
Some other works in yield criteria analysis are those of (Christensen, 2006a; Christensen, 2006b; 
Chandrasekaran; Kuhl et al. 2006b; Lubliner). The present work is aimed at formulating new general 
yield criterion mathematical models in terms of the allowable stress for thin isotropic rectangular plates 
based on maximum strain energy. And using the polynomial displacement shape profile to formulate 
specific mathematical models for various plate types. This will simplify yield criteria analysis and guide 
yield conditions to prevent the failure of thin plate structures.  

 

MATERIALS AND METHODS  
 
A. Formulation of Yield Criterion Equation 
 
This formulation of the yield criterion equation will be based on the maximum strain energy theory of 

yield. 
 

B. Maximum Strain Energy Theory Approach  
 
The strain energy per unit volume ‘U’ is given by  

U =
1

2
σε.                                                                                                                                              (3) 

Where σ is stress and ε is strain. 

Expanding Eq.3 for a two-dimensional plate structure (x-y plane), we have  

U =  
1

2
(σxεx + σyεy + τxyγxy).                                                                                                      (4) 

But strains for isotropic plates are given as; 

εx =
1

E
(σx − ʋσy).                                                                                                                          (5a) 

εx =
1

E
(σy − ʋσx).                                                                                                                          (5b) 

γxy =
τxy

G
=  

2(1 + ʋ)

E
τxy.                                                                                                            (5c) 

where G =  
E

2(1 + ʋ)
.                                                                                                                     (6) 

E is the Young modulus of elasticity, τxy is shear stress, γxy is shear strain, and ʋ is the Poisson ratio. 

Substituting Eq.5 in Eq.4 yields 
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U =  
1

2E
[σx(σx − ʋσy) + σy(σy − ʋσx) + 2(1 + ʋ) τxy

2].                                                (7a) 

Opening up internal bracket yields 

U =
1

2E
[σx

2 − ʋσxσy + σy
2 − ʋσxσy + 2τxy

2 + 2ʋ τxy
2].                                                   (7b)   

Collecting like terms yields 

U =  
1

2E
[σx

2 + 2τxy
2 + σy

2 − 2ʋσxσy + 2ʋ τxy
2].                                                              (7c) 

Rearranging yields 

U =  
1

2E
[σx

2 + 2τxy
2 + σy

2 + 2ʋ(τxy
2 −  σxσy].                                                               (7d) 

Therefore, at yield, U = U0
 ,  hence 

U0 =  
1

2E
[σx

2 + 2τxy
2 + σy

2 + 2ʋ(τxy
2 −  σxσy]  ≤  U0max.                                           (8) 

Let σx = fy.                                                                                                                                   (9) 

Let σy = τxy = 0.                                                                                                                        (10) 

where fy is the yield stress of a material                                                                                      

Thus, Eq.8 reduces to 

U0 =  
1

2E
[fy

2]  ≤  U0max.                                                                                                          (11) 

U0max ≥  
1

2E
[fy

2].                                                                                                                       (12) 

Substituting Eq.11 into Eq.8 yields 

U0 =  
1

2E
[σx

2 + 2τxy
2 + σy

2 + 2ʋ(τxy
2 −  σxσy]  ≤  

1

2E
[fy

2].                                     (13a) 

That is  

σx
2 + 2τxy

2 + σy
2 + 2ʋ(τxy

2 − σxσy) ≤ fy
2.                                                                      (13b) 

From Eq.13b we have 

σx
2 [1 +

2τxy
2

σx
2

+
σy

2

σx
2

+ 2ʋ (
τxy

2

σx
2

− 
σxσy

σx
2

)] ≤ fy
2.                                                             (14) 

But stresses in a two-dimensional plane are 

σx  = −
EZ

(1 − ʋ2)
(

∂2w

∂x2
+ ʋ

∂2w

∂y2
).                                                                                           (15) 

σy  = −
EZ

(1 − ʋ2)
(ʋ

∂2w

∂x2
+

∂2w

∂y2
).                                                                                           (16) 

τxy  = −
EZ(1 − ʋ)

2(1 − ʋ2)
(

∂2w

∂x ∂y
).                                                                                                      (17) 

Where Z is the plate depth. 

The displacement shape function, w, is given as 

 w = Ah                                                                                                                                             (18) 
where A is the amplitude of deflection and h is the shape profile of the plate based on the plate type. 

If we take the aspect ratio of the plate to be; 

 

Ƨ =
b

a
                                                                                                                                                 (19) 

In non-dimensional parameters,  

x = aR,   y = bQ, z = St, 0 ≤ R ≤ 1, 0 ≤ Q ≤ 1, S = 0.5                                  (20) 
Substitute Eq. 18, Eq.19, and Eq.20 in Eq. 15, Eq.16, and Eq.17 yield equation s Eq. 21, Eq. 22 and Eq. 23 

respectively. 

 

σx  = −
EAZ

(1 − ʋ2)a2
(

∂2h

∂R2
+

ʋ

Ƨ2

∂2h

∂Q2
)                                                                             (21) 
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σy  = −
EAZ

(1 − ʋ2)a2
(ʋ

∂2h

a2 ∂R2
+

1

Ƨ2

∂2h

∂Q2
)                                                                     (22) 

 

τxy  = −
EAZ(1 − ʋ)

2a2(1 − ʋ2)Ƨ
(

∂2h

∂R ∂Q
)                                                                                     (23) 

 

Let m1 =  
σy

σx

  ⇒  σy =   m1σx.                                                                                    (24) 

 

m2 =  
τxy

σx

  ⇒  τxy =   m2σx.                                                                                         (25) 

Substitute Eq.24 to Eq.25 into Eq.14 yields 

σx
2[1 + 2m2

2 + m1
2 + 2ʋ(m2

2 − m1)] ≤ fy
2.                                                        (26)  

 

σx
2[1 + m1

2 −  2vm1 + 2(1 + ʋ)m2
2] ≤ fy

2.                                                          (27)  

 

σx
2  ≤

fy
2

[1 + m1
2 −  2vm1 + 2(1 + ʋ)m2

2]
.                                                             (28) 

 

σx  ≤
fy

√[1 + m1
2 −  2vm1 + 2(1 + ʋ)m2

2]
.                                                            (29) 

 

Eq.29 can be written as Eq.30 

σx ≤  
fy

F
.                                                                                                                              (30) 

Where F is the stress factor of safety, given by Eq.31 

 

 F = √[1 + m1
2 − 2vm1 + 2(1 + ʋ)m2

2]     = √M .                                            (31) 
And  

 M = [1 + m1
2 − 2vm1 + 2(1 + ʋ)m2

2].                                                                (32) 
Substitute Eq.21 and Eq.22 into Eq.24 yields 

m1 =
σy

σx

=  
−

EAZ
(1 − ʋ2)a2 (ʋ

∂2h
a2 ∂R2 +

1
Ƨ2

∂2h
∂Q2)

−
EAZ

(1 − ʋ2)a2 (
∂2h
∂R2 +

ʋ
Ƨ2

∂2h
∂Q2)

.                                                      (33)              

 

m1 =  
(ʋ

∂2h
a2 ∂R2 +

1
Ƨ2

∂2h
∂Q2)

(
∂2h
∂R2 +

ʋ
Ƨ2

∂2h
∂Q2)

.                                                                                        (34)     

 

Substitute Eq.21 and Eq.23 into Eq.25 yields 

m2 =  
τxy

σx

   =  
−

EAZ(1 − ʋ)
2a2(1 − ʋ2)Ƨ

(
∂2h

∂R ∂Q
)

−
EAZ

(1 − ʋ2)a2 (
∂2h
∂R2 +

ʋ
Ƨ2

∂2h
∂Q2)

 .                                                    (35)   

 

m2 =  
(1 − ʋ)

2Ƨ
 

(
∂2h

∂R ∂Q
)

(
∂2h
∂R2 +

ʋ
Ƨ2

∂2h
∂Q2)

.                                                                                  (36) 

Eq.34 and Eq.36 becomes Eq.37 and Eq.38 respectively. 

m1 =
n2

n1

.                                                                                                                             (37) 
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m2 =
(1 − ʋ)

2Ƨ

n3

n1

.                                                                                                                   (38) 

Where, 

 n1  =   
∂2h

∂R2
+ 

ʋ

Ƨ2

∂2h

∂Q2
 =  

∂2hx

∂R2
∗ hy +   hx ∗  

∂2hy

∂Q2
.                                                      (39) 

n2  =   
ʋ

a2

∂2h

∂R2
+  

1

Ƨ2

∂2h

∂Q2
 =  

ʋ

a2
(

∂2hx

∂R2
∗ hy) +   

1

Ƨ2
(hx ∗  

∂2hy

∂Q2
 ).                            (40) 

 

n3  =   
∂2h

∂R ∂Q
 =  

∂hx

∂R
∗ 

∂hy

∂Q
.                                                                                              (41) 

Eq.39, Eq.40 and Eq.41 are the general n-value equations as presented in Table-2. 

Substituting Eq.39, Eq.40 and Eq.41 into Eq.31 yields 

F = √[1 +
n2

2

n1
2

−  2ʋ
n2

n1

+
(1 + ʋ)(1 − ʋ)2

2Ƨ2

n3
2

n1
2

] .                                                        (42) 

Simplifying we have 

F = √[1 +
n2

2

n1
2

−  2ʋ
n2

n1

+
(1 + ʋ)

2
(
1 − ʋ

Ƨ
)2

n3
2

n1
2

] .                                                      (43) 

Again, evaluate further yields 

F = √[1 +
n2

2

n1
2

−  2ʋ
n2

n1

+
(1 − ʋ − ʋ2 + ʋ3)

2Ƨ2

n3
2

n1
2

] .                                                     (44) 

Substituting Eq.44 into Eq.30 becomes 

σx  ≤
fy

√[1 +
n2

2

n1
2 −  2ʋ

n2

n1
+

(1 − ʋ − ʋ2 + ʋ3)
2Ƨ2

n3
2

n1
2]

.                                                 (45a) 

σx  ≤
fy

√[
n1

2 + n2
2

− 2ʋn1n2 +
(1 − ʋ − ʋ2 + ʋ3)

2Ƨ2 n3
2

n1
2 ]

.                                          (45b) 

 

Note: if σx < fy(Elastic limit); σx = fy (Purely Plastic ie yield has ocurred);  

σx > fy(Not attainable) 

Eq.45 is the general yield criterion equation. 

The general formulated Allowable stress Equation and Stress Factor Equation (that is Eq.45 and Eq.44 

respectively) are presented in Table-2. 
 

C. Evaluation of ‘n-Values’ and Formulation of ‘n-Values’ Equations  
The various n-values (that is, n1, n2, and n3) for the different plate types will be evaluated using the 

polynomial displacement shape profiles in Table-1. 
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Table-1 The polynomial displacement shape profiles (Ibearugbulem et al., 2014) 

 

Plate Type Shape Profile, h 

SSSS (𝑅 − 2𝑅3 + 𝑅4)(Q − 2𝑄3 + 𝑄4) 

CCCC (𝑅2 − 2𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 

CSSS (R − 2𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3 + 𝑄4) 

CSCS (R − 2𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 

CCSS (1.5𝑅2 − 2. 5𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3 + 𝑄4) 

CCCS (1.5𝑅2 − 2. 5𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 

SSFS (R-2R3+R4) ( 
7 

3
 Q-

10 

3
 Q3+

10 

3
 Q4-Q5) 

SCFS (1.5R2-2.5R3+R4) ( 
7 

3
 Q-

10 

3
 Q3+

10 

3
 Q4-Q5) 

CSFS (R-2R3+R4) (2.8Q2-5.2Q3+3.8Q4-Q5) 

CCFS (1.5R2-2R3+R4) (2.8Q2-5.2Q3+3.8Q4-Q5) 

SCFC (R2-2R3+R4) ( 
7 

3
 Q-

10 

3
 Q3+

10 

3
 Q4-Q5) 

CCFC (R2-2R3+R4) (2.8Q2-5.2Q3+3.8Q4-Q5) 

S- Simply supported edge, C - Clamped edge, F - Free edge 

Where,  

SSSS - a plate simply supported on all the four edges 

CCCC- a plate clamped/fixed on all the four edges, and so on. 

R = X/a, 0≤R≤1; Q= Y/b, 0≤R≤1 

a - plate dimension (length) along X-axis, b - is plate dimension (Width) along Y-axis 

The n-values for the various plate types will be evaluated as follows. 

 

D. Evaluation of n-Values for SSSS Plate 
 From Table 1, 
  h = (R − 2R3 + R4)(Q − 2Q3 + Q4) = hx ∗  hy.                                                           (46) 

∂2h

∂R2
=  

∂2hx

∂R2
∗ hy =  (−12R2 + 12R2)(Q − 2Q3 + Q4).                                               (47a) 

∂2h

∂Q2
= hx ∗  

∂2hy

∂Q2
=  (R − 2R3 + R4)(−12Q + 12Q2).                                                 (47b) 

∂2h

∂R ∂Q
=

∂hx

∂R
∗ 

∂hy

∂Q
=  (−6R2 + 4R3)(−6Q2 + 4Q3).                                                   (47c) 

  Substitute Equations (47) into Equations (39)- (41) yields 

n1 = [(−12R2 + 12R2)(Q − 2Q3 + Q4)

+
ʋ

Ƨ2
(R − 2R3 + R4)(−12Q + 12Q2)] .                                                  (48) 

 n2 = [ʋ(−12R2 + 12R2)(Q − 2Q3 + Q4)

+
1

Ƨ2
(R − 2R3 + R4)(−12Q + 12Q2)] .                                              (49) 

n3 = (1 − 6R2 + 4R3)(1 − 6Q2 + 4Q3)            (50) 

At the point of maximum deflection, R = Q = 0.5. Substitute these values of R and Q in Eq.48 to Eq.50, 

we have 

n1 = (−0.9375 −
0.9375ʋ

Ƨ2
).                                                                                                 (51) 

 n2 =   (−0.9375ʋ −
0.9375

Ƨ2
).                                                                                              (52) 

n3 = 0.                                                                                                                                           (53) 
Substituting Eq.51 to Eq.53 into Eq.44 yields the stress factor as Eq.54  
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F =  [1 +
(−0.9375ʋ −

0.9375
Ƨ2 )

2

(−0.9375 −
0.9375ʋ

Ƨ2 )
2 −  2ʋ

(−0.9375ʋ −
0.9375

Ƨ2 )

(−0.9375 −
0.9375ʋ

Ƨ2 )
]

1
2

.                                      (54) 

 

Similarly, the rest of the 11 plate types contain in Table 1, were evaluated. 

The n-values equations (that is, Eq.51 to Eq.53) for the SSSS plate and other plate types under 

consideration are presented in Table-3. While stress factor equations for the twelve plates are presented 

in Table-4. 

 

E. Numerical Application 
Consider a structural steel square plate with the following properties. ʋ = 0.3, a =1m, fy =250MPa. 

The numerical results obtain from yield criterion equations in Table-3-Table-4 are presented in Table-

5. 

 

RESULTS AND DISCUSSION 

The popular widely used yield criteria are those of Trisca and von Mises. In this work, a new yield 

criterion approach is presented.  The general yield criterion or allowable stress equation is given by 

Eq.45 and presented in row one of Table-2. Also, the general n-values equations are given in Eq.39 to 

Eq.41 and the stress factor equation given by any of the Eq.42, Eq.43 or Eq.44 are presented in row three 

and row two of Table-2 respectively. The general equation here applies to any boundary condition and 

any thin structural plate material. The specific n-values equations and stress factor equations for the 

various plate types under consideration are presented in Table-3 and Table-4 respectively. This is the 

first time these equations are given for the analysis of allowable stress within and beyond the elastic 

limit. 

Table-2 General Formulated Yield Criterion Equations 

SN DESCRIPTION EQUATIONS 

 

1 

 

Allowable Stress 

σx  ≤
fy

F
    

 

2 

Stress Factor of 

Safety F =
1

n1

√[n1
2 + n2

2
− 2vn1n2 +

(1 + ʋ)(1 − ʋ)2

2Ƨ2
n3

2] 

 

 

 

 

3 

 

 

 

 

n-values 

 n1 =  (
∂2h

∂R2
+

ʋ

Ƨ2

∂2h

∂Q2
) 

n2 =  (ʋ
∂2h

∂R2
+

1

Ƨ2

∂2h

∂Q2
) 

n3 =  (
∂2h

∂R ∂Q
) 
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Table-3 n-value Equations for Failure Analysis at the point of Maximum Deflection 

Plate 

Type 
n1 =  (

∂2h

∂R2
+

ʋ

Ƨ2

∂2h

∂Q2
) n2 =  (ʋ

∂2h

∂R2
+

1

Ƨ2

∂2h

∂Q2
) n3 =  (

∂2h

∂R ∂Q
) 

SSSS 
(−0.9375 −

0.9375ʋ

Ƨ2
) (−0.9375ʋ −

0.9375

Ƨ2
) 

0 

CCCC 
(−0.0625 −

0.0625ʋ

Ƨ2
) (−0.0625ʋ −

0.0625

Ƨ2
) 

0 

CSSS 
(−0.375 −

0.46875ʋ

Ƨ2
) (−0.375ʋ −

0.46875

Ƨ2
) 

0 

CSCS 
(−0.1875 −

0.3125ʋ

Ƨ2
) (−0.1875ʋ −

0.3125

Ƨ2
) 

0 

CCSS 
(−0.1875 −

0.1875ʋ

Ƨ2
) (−0.1875ʋ −

0.1875

Ƨ2
) 

0.015625 

CCCS 
(−0.09375 −

0.125ʋ

Ƨ2
) (−0.09375ʋ −

0.125

Ƨ2
) 

0 

SSFS −4 −4ʋ 0 

SCFS −2 −2ʋ 0.083333333 

CSFS −1.2 −1.2ʋ 0 

CCFS −0.6 −0.6ʋ 0.025 

SCFC −1.333333333 −1.333333333ʋ 0 

CCFC −0.4 −0.4ʋ 0 
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Table-4 Stress Factor, F, Equations 

Plate 

Type 
σx  ≤

fy

F
 

F = √[1 +
n2

2

n1
2

−  2ʋ
n2

n1

+
(1 − ʋ − ʋ2 + ʋ3)

2Ƨ2

n3
2

n1
2

] 

SSSS 

 [1 +
(−0.9375Ƨ2ʋ − 0.9375)2

(−0.9375Ƨ2 − 0.9375ʋ)2
−  2ʋ

(−0.9375Ƨ2ʋ − 0.9375)

−0.9375Ƨ2 − 0.9375ʋ
]

1
2

 

CCCC 

 [1 +
(−0.0625Ƨ2ʋ − 0.0625)2

(−0.0625Ƨ2 − 0.0625ʋ)2
−  2ʋ

(−0.0625Ƨ2ʋ − 0.0625)

(−0.0625Ƨ2 − 0.0625ʋ)
]

1
2

 

CSSS 

 [1 +
(−0.375Ƨ2ʋ − 0.46875)2

(−0.375Ƨ2 − 0.46875ʋ)2
−  2ʋ

(−0.375Ƨ2ʋ − 0.46875)

(−0.375Ƨ2 − 0.46875ʋ)
]

1
2

     

CSCS 

 [1 +
(−0.1875Ƨ2ʋ − 0.3125)2

(−0.1875Ƨ2 − 0.3125ʋ)2
− 2ʋ

(−0.1875Ƨ2ʋ − 0.3125)

(−0.1875Ƨ2 − 0.3125ʋ)
]

1
2

 

CCSS 
 [1 +

(−0.1875Ƨ2ʋ − 0.1875)2

(−0.1875Ƨ2 − 0.1875ʋ)2
−  2ʋ

(−0.1875Ƨ2ʋ − 0.1875)

(−0.1875Ƨ2 − 0.1875ʋ)

+
0.0001220703125Ƨ2(1 − ʋ − ʋ2 + ʋ3)

(−0.1875Ƨ2 − 0.1875ʋ)2
]

1
2

 

CCCS 

 [1 +
(−0.09375Ƨ2ʋ − 0.125)2

(−0.09375Ƨ2 − 0.125ʋ)2
−  2ʋ

(−0.09375Ƨ2ʋ − 0.125)

(−0.09375Ƨ2 − 0.125ʋ)
]

1
2

 

SSFS 
 [1 + ʋ2 − 2ʋ2]

1
2 

SCFS 

 [1 + ʋ2 − 2ʋ2 +
0.0008680555486(1 − ʋ − ʋ2 + ʋ3)

Ƨ2
]

1
2

 

CSFS 
 [1 + ʋ2 − 2ʋ2]

1
2 

CCFS 

 [1 + ʋ2 − 2ʋ2 +
0.0008680555556(1 − ʋ − ʋ2 + ʋ3)

Ƨ2
]

1
2

 

SCFC 
 [1 + ʋ2 − 2ʋ2]

1
2 

CCFC 
 [1 + ʋ2 − 2ʋ2]

1
2 

 

Table-5 shows the numerical results for n-values as presented in columns 2, 3, and 4 for n1, n2, and n3 

respectively. While the results for the stress factor of safety for the various plate types are presented in 

column 5 of Table-5. And the allowable stress values using the yield stress of 250MPa for mild steel are 

presented in column 6. Generally, when the yield consideration is within the elastic limit, the actual 

yield stress fy for mild steel is taken as 250MPa. Beyond this stress, initial yield is prominent within the 

elastic range.  
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The numerical results from Table-5, indicate that the stress factor for plates without any free edge is 

above unity while for plates with one free edge are below unity but approximately equal to one. The 

allowable stress values obtained using fy =250MPa (considering yield within elastic range) imply that 

beyond these values the plate will yield. These results are in line with those of existing yield criterion 

equations expressed in pieces of literature by Lee and Ross. So, from the predicted values of allowable 

stress from the new equation in this work for the various plate types considered as seen in column 6 of 

the Table 5, it is shown that, when the stress factor of safety is less than unity, the stress is above 250MPa. 

That is, the likelihood of failure or yield is prominent.  

Based of the above observation, for general thin rectangular plates design, taking the average of the 

stress factor values, a conservative stress factor can be taken as 1.10. Therefore, for design purposes, the 

general stress factor for all thin plates based on the numerical results obtain here may be taken as 1.10. 

These yield values are in tandem with ranges of the initial or minimum yield stress of Grade 43 steel 

(S275) given by BS EN 10025:1993. But when the failure is within the inelastic range, then the rupture 

or ultimate stress is considered and according to Gere (2004), the ultimate stress for mild A36 mild steel 

is 400MPa. The allowable yield stress becomes limit state stress if the ultimate yield stress (fy = 400MPa) 

of a material is used instead of the initial yield stress (fy = 250MPa). This work has set the limit of stress 

that should be allowed if failure or yield of rectangular plate structures must be avoided. This will 

reduce the incidence of plated structure failure, and save resources and economic damages. Beyond 

this, the formulated equations provide a quicker means of analysis of yield in rectangular plates, and 

will be most beneficial to plate analyst and designers, and the aerospace and shipbuilding industries. 

Table-5 Allowable Stress at from Failure Criterion Analysis 

Plate type 
𝜎𝑎𝑙𝑙𝑜𝑤 ≤

𝑓𝑦

𝐹
;          Ƨ =

𝑏

𝑎
 = 1;  𝑓𝑦 = 250𝑀𝑃𝑎 

 𝑛1 𝑛2 𝑛3 F 𝜎𝑎𝑙𝑙𝑜𝑤(MPa) 

SSSS -1.21875 -1.21875 0 1.183216 211.2886 

CCCC -0.08125 -0.08125 0 1.183216 211.2886 

CSSS -0.51563 -0.58125 0 1.262688 197.9904 

CSCS -0.28125 -0.36875 0 1.390088 179.8447 

CCSS -0.24375 -0.24375 0.015625 1.183769 211.1899 

CCCS -0.13125 -0.15313 0 1.288841 193.9727 

SSFS -4 -1.2 0 0.953939 262.0712 

SCFS -2 -0.6 0.083333 0.954229 261.9916 

CSFS -1.2 -0.36 0 0.953939 262.0712 

CCFS -0.6 -0.18 0.025 0.954229 261.9916 

SCFC -1.33333 -0.4 0 0.953939 262.0712 

CCFC -0.4 -0.12 0 0.953939 262.0712 
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CONTRIBUTION TO KNOWLEDGE 

 
This work has formulated a new general allowable stress equation, n-value equations and stress factor 

equation for the yield or failure criterion analysis of thin rectangular plates. It has also, formulated 

specific allowable stress equations, n-value equations and stress factor equations for twelve (12) thin 

rectangular plate types. These equations are applicable to any edge condition of plate. These new 

equations will no doubt aid easy analysis and design of thin rectangular plates, save time, energy and 

economic damage. This work will open up a new dimension to research in this field. 

 

CONCLUSION  
 

This study has formulated a new general allowable stress equation for yield analysis of thin rectangular 

plates that will simplify the solution to yield problems. It has shown that the stress factor of safety of 

plated structures can be taken as 1.10 based on the average values predicted from the new equation for 

various plate types considered. Based on this work, the limit of the safety of plated structures is set, 

and beyond which the probability of failure or yield becomes imminent. Through this work, they will 

be a reduction in occurrences of thin plate structures failure, saving of resources, and economic 

damages. This is a new dimension to the field of yield criterion that will be relevant to analysts and 

designers of plated structures. 
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