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INTRODUCTION  

 
The behavior of structural steel or material is such that it is linear up to its proportional limit, and 
beyond its initial yield point it becomes nonlinear, that is, the stress is no longer proportional to the 
strain (Nash and Potter, 2011; Khurmi & Khurmi, 2013). This means that the young modulus ‘E’ of the 
material is no longer constant, but varies along the deformation line. At this inelastic stage, the E is 
smaller than that in the elastic range. The nonlinearity of a material can be expressed in terms of the 
material properties or the geometry of the material (Moy, 1981). The study of thin plates with respect 
to material nonlinearity only assumes that the deflection is very small comparatively, as such, the 
geometrical nonlinear effect is neglected. However, Ross (1987) stated that this assumption may not be 
true.  
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Abstract: The present work is aimed at deriving the specific nonlinear frequency equations for 

the analysis of thin rectangular plates, based on the generally formulated equation, and using 

the new equations to predict the behavior of such plates under consideration. The shape profiles 

of the five plates under consideration were used to evaluate the individual plate types' stiffnesses 

due to bending and membrane actions. These were substituted into the general nonlinear 

frequency equation and evaluated to obtain the specific nonlinear equation for each plate type. 

The numerical results for the fundamental frequencies obtained for these plate types were 

compared with those in the literature. These values agree absolutely with those in literature with 

negligible percentage differences.  It was observed that the nonlinear frequency increased as the 

ratio of out–of–plane displacement to the thickness of the plate (w/t) increased. The conclusion 

from this study is that the general nonlinear equation applies to these plate types for adequate 

prediction of the nonlinear frequency of thin rectangular plates. In addition, the approach is 

simpler and quicker for analysis, and has alleviate the dearth of numerical data for these plate 

types. 
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Several scholars have analyzed material nonlinearity problems using different approaches. The 
extremum principle of plasticity as reported by Prager and Hodge (1951), Hodge (1968), Johnson and 
Mellor (1973), and Martin (1975), is generally used to obtain upper and lower bounds for a true ultimate 
load of an elastoplastic plate in bending, because of the difficulties of the theoretical treatment of such 
plates. Lin and Ho (1968) and Lin (1968) applied the analogy concept to reduce the analysis of a plate 
with plastic strain to the analysis of identical plates with an additional set of lateral loads and edge 
moments. In terms of geometric nonlinearity, the effect of the geometrical change on the equilibrium of 
a plate must be considered as well as the stretching of the middle surface of the plate in analysis, the 
deflection of a plate is significant. Geometrical nonlinearity is accounted for by the addition of higher-
order terms in the strain-displacement relations and /or by updating the geometry of the plate using a 
step-by-step approach. Most of the research works (Levy, 1942; Yamaki, 1959; Koiter, 1945 etc.) 
involving large deflection, are based on geometrical nonlinearity. It is observed that, without 
geometrical nonlinearity, the behavior of the plate cannot be investigated correctly, and without 
material nonlinearity, the ultimate strength cannot be accurately predicted (Lee, 1977). Structural 
nonlinearity is a structural system that results in having a stiffness matrix or load vector that is not 
constant (Klein, 2022). The formulated nonlinear frequency equation by Adah et al. (2021) incorporates 
both nonlinearities in its formulation of the expressions for dynamic analysis of thin rectangular 
isotropic plates under large deflection to predict the nonlinear frequency. This was done by the 
involvement of both strain-displacement relations and stress-strain relations in the formulation of the 
dynamic expression for thin rectangular isotropic plates under large deflection. Rao (2004) stated that 
based on Rayleigh’s principle, the frequency of vibration of a conservative system vibrating about the 
equilibrium position, has a stationary value in the neighborhood of a natural mode; and that this value 
is a minimum value in the neighborhood of the fundamental natural mode. Thus, Rayleigh’s method 
was fundamentally developed to evaluate only the fundamental natural frequency, of a given 
conservative system by using a single admissible function that satisfies all the geometric boundary 
conditions of the problem.  Meirovitch (1986), gave the governing mathematical expression for 
Rayleigh’s method as 

ω2 =
Vmax 

T∗
                                                                                                                                                                                (1) 

where  Vmax is the maximum potential energy, T∗ is the reference kinetic energy, and ω is the circular 
frequency.   

Other scholars who analyzed nonlinear free vibration problems are, Leissa (1973), Ventsel and 
Krauthermer (2001), etc. The use of Rayleigh’s method, which often yields very good accuracy, is highly 
recommended if only the lowest natural frequency is required. This method is based on the principle 
of conservation of energy, while the Ritz method is based on the principle of minimum potential energy. 
Another method of analysis of nonlinear vibration problems is the Galerkin method. Reddy (1993) 
stated that the Galerkin method is a modified case of the Petrov-Galerkin method in which the 
approximation functions correspond to the weighted functions. In the Galerkin method, the variational 
integral is immaterial (Finlayson and Scriven, 1966). However, like in the Ritz method, the convergence 
of the Galerkin method depends very much on the selected weighted functions and their completeness. 
Leung and Mao (1995) used the method to work on the nonlinear vibration of beams and plates. Szilard 
(2004), stated that the Galerkin method can be applied successfully to such diverse types of problems 
as small and large deflection theories, linear and nonlinear vibration, and stability problems of plates 
and shells, provided that differential equations of the problem under investigation, have already been 
determined. The mathematical theory behind Galerkin’s method is quite complicated, but its physical 
interpretation is relatively simple. The use of Galerkin’s method is particularly recommended for the 
solution of differential equations with variable coefficients. Due to difficulties in the closed form or 
energy approach, the numerical solutions took the center stage to ease the difficulties of the former. 
Recently, Onodagu (2018), used Ritz Method to analyze the nonlinear dynamic problem of Thin 
Rectangular Plates. He did this by direct integration of Von Karman's large deflection governing 
equation based on polynomial displacement functions from the analytical energy approach. He applied 
the Ritz equation in his analysis and finally arrived at the nonlinear frequency of thin plates.  
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His approach was based on the long-standing von Karman large deflection equations of 1910, which 
are coupled, nonlinear partial differential equations with Airy’s stress function. His mathematical 
model could predict a nonlinear frequency of minimal magnitude which seems to undermine the actual 
frequency of the plate beyond the yield point. However, Adah et al. (2021) circumvent the von Karman 
equation and formulated a general nonlinear frequency equation for free vibration analysis of thin 
isotropic rectangular as presented in Equation (2). This work aims to apply this newly formulated 
general equation to formulate specific equations for thin rectangular plates with different edge 
conditions and use them to predict the linear and nonlinear frequency. 

 

MATERIALS AND METHODS  
 

2.1 Linear/Nonlinear Resonating Frequency Equation 

Adah et al. (2021), formulated a general nonlinear free vibration equation of a rectangular thin plate 
subjected to uniaxial loading along the x-axis as 

𝜆𝑥 =  √[ 
𝐾𝑏𝑇

𝑘𝜆

+
3

2

𝐾𝑚𝑇

𝑘𝜆

(
𝐴

𝑡
)

2

 ] ∗
1

𝑎2
√

𝐷

𝜌𝑡
                                                                                                                              (2) 

Where 𝜆𝑥 is the linear/nonlinear resonating frequency along the x-axis. 

 𝐾𝑏𝑇 is the total bending stiffness given as  

KbT = [kbx +
2kbxy

Ƨ2
+

kby

Ƨ4
]                                                                                                                                                  (3) 

𝐾𝑚𝑇  is total membrane stiffness, given as 

KmT = [kmx +
2kmxy

Ƨ2 +
kmy

Ƨ4 ]                                                                                                                                                (4) 

A is the dynamic amplitude of vibration, given as 

𝐴 =  
𝑤

ℎ
                                                                                                                                                (5) 

t is the thickness of the plate, 𝑘𝜆 is external dynamic load stiffness, a is the plate dimension along the x-
axis, D is the flexural rigidity of the plate, and 𝜌 is the plate density. W is the displacement of the plate, 
h is the shape profile of the plate, and the individual bending and membrane stiffnesses are given by 

𝑘𝑏𝑥 =     ∫ (
𝜕2ℎ𝑥

𝜕𝑅2 )
2

𝜕𝑅 ∗
1

0
 ∫ ℎ𝑦

2𝜕𝑄
1

0
                                                                                     (6a) 

𝑘𝑏𝑥𝑦 =  ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

𝜕𝑅 ∗
1

0
 ∫ (

𝜕ℎ𝑦

𝜕𝑄
)

2

𝜕𝑄
1

0
                                                                                       (6b) 

𝑘𝑏𝑦 =   ∫ ℎ𝑥
2𝜕𝑅 ∗

1

0
 ∫ (

𝜕2ℎ𝑦

𝜕𝑄2 )
2

𝜕𝑄
1

0
                                                                                      (6c) 

 𝑘𝑚𝑥 =   ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

4

𝜕𝑅 ∗
1

0
 ∫ ℎ𝑦

4𝜕𝑄
1

0
                                                                                     (6d) 

𝑘𝑚𝑥𝑦 = ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

. ℎ𝑥

2

𝜕𝑅 ∗
1

0
 ∫ (

𝜕2ℎ𝑦

𝜕𝑄2 )
2

. ℎ𝑦
2𝜕𝑄

1

0
                                                              (6e) 

𝑘𝑚𝑦 = ∫ ℎ𝑥
4𝜕𝑅 ∗

1

0
 ∫ (

𝜕2ℎ𝑦

𝜕𝑄2 )
4

𝜕𝑄
1

0
                                                                                         (6f) 

 𝑘𝑁𝑥 =  ∫ (
𝜕ℎ𝑥

𝜕𝑅
)

2

𝜕𝑅 ∗
1

0
 ∫ ℎ𝑦

2𝜕𝑄
1

0
                                                                                         (6g) 

Subscripts b and m denote bending and membrane parts respectively. 
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At the point of maximum deflection, Equation (5) becomes 

𝐴 =  
𝑤

ℎ𝑚𝑎𝑥
                                                                                                                                        (7) 

 Substituting Equation (7) into Equation (2) yields 

𝜆𝑥𝑚𝑎𝑥 =  √[ 
𝐾𝑏𝑇

𝑘𝜆
+

3

2

𝐾𝑚𝑇

𝑘𝜆
(

1

ℎ𝑚𝑎𝑥
)

2

(
𝑤

𝑡
)

2

 ] ∗
1

𝑎2 √
𝐷

𝜌𝑡
                                                           (8) 

This reduces to  

𝜆𝑥𝑚𝑎𝑥 =
𝑓

𝑎2 √
𝐷

𝜌𝑡
                                                                                                                               (9) 

Where  

𝑓 = √[ 
𝐾𝑏𝑇

𝑘𝜆
+

3

2

𝐾𝑚𝑇

𝑘𝜆
(

1

ℎ𝑚𝑎𝑥
)

2

(
𝑤

𝑡
)

2

 ]                                                                                       (10) 

Is the coefficient of nonlinear resonating frequency. Equation (8) is the general nonlinear free vibration 
equation of a rectangular isotropic plate in terms of deflection w. 

 

2.2 Formulation of Specific Nonlinear Equations for Five Plate Types 
 
To formulate the specific nonlinear equations for these five plate types, the polynomial shape profiles 
of the plates under consideration are presented in Table 1.  
 
 

Table-1 Plate Types, Shapes, and Shape Profile for Six Plate Types (Ibearugbulem et al., 2014) 
 

SN PLATE BCs 
 

SKETCHES 
(Plan View)  

SHAPE PROFILE (h) 
W = Ah; (i.e h = R strip x Q strip) 

 
 
 
 

1 

 
 

CCCC 
 

= (C-C)R x (C-
C)Q 

  
 
 
 

(𝑅2 − 2𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 
 
 
 

 
 
 
 

2 

 
 

CSSS 
 

= (S-S)R x (C-S)Q 
 

  
 
 

(R − 2𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3 + 𝑄4) 
 
 
 

 
 
 

3 

 
 

CSCS 
 

= (S-S)R x (C-C)Q 
 

  
 
 

(R − 2𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 
 

 
 

C 

(2) CCCC 

C 

C 

C 

S S 

C 

S 

(3) CSSS 

S 

C 

C 

S 

(4) CSCS 
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4 

 
 

CCSS 
 

= (C-S)R x (C-S)Q 
 

  
 
 

(1.5𝑅2 − 2. 5𝑅3 + 𝑅4)(1.5𝑄2 − 2.5𝑄3

+ 𝑄4) 
 

 
 
 
 

5 

 
 

CCCS 
 

= (C-S)R x (C-C)Q 
 

  
 
 

 
(1.5𝑅2 − 2. 5𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4) 

 
 

 

 

2.3 Evaluation of Stiffness 
 
Each of these shape profiles is evaluated using Equations 5 as follows: For CCCC plate, from Table-1, 
the polynomial deflected shape profile for the CCCC plate is given as; 
h = (R2-2R3+R4)(Q2-2Q3+Q4) = hx * hy                                      (11) 
Where 
hx = (R2-2R3+R4); hy = (Q2-2Q3+Q4)                                                  (12) 

Differentiating Equations (11) and substituting into Equations (6a-g) and carrying out the evaluation of 
stiffness integrals we have the various stiffnesses of the CCCC plate as; 

kbx =     ∫ (
∂2hx

∂R2 )
2

∂R ∗
1

0
 ∫ hy

2 ∂Q
1

0
                                                                     

kbx = ∫ (2 − 12R + 12R2)2 ∂R ∗
1

0
 ∫ (Q2 − 2Q2+Q4)2 ∂Q

1

0
                     

kbx = ∫ (4 − 48R + 192R2 − 288R3 + 144R4) ∂R ∗
1

0
 ∫ (Q4 − 4Q5+6Q6 − 4Q7 +

1

0

Q8) ∂Q                                                            (13a) 

kbxy =  ∫ (
∂hx

∂R
)

2

∂R ∗
1

0

 ∫ (
∂hy

∂Q
)

2

∂Q
1

0

                

  kbxy = ∫ (2R − 6R2 + 4R3)2 ∂R ∗
1

0

 ∫ (2Q − 6Q2 + 4Q3)2 ∂Q
1

0

                

kbxy = ∫ (4R2 − 24R3 + 52R4 − 48R5 + 16R6) ∂R ∗
1

0
 ∫ (4Q2 − 24Q3 + 52Q4 − 48Q5 +

1

0

16Q6) ∂Q                                         (13b) 

kby =   ∫ hx
2 ∂R ∗

1

0

 ∫ (
∂2hy

∂Q2
)

2

∂Q
1

0

                    

kby =  ∫ (R2 − 2R2+R4)2 ∂R ∗
1

0

 ∫ (2 − 12Q + 12Q2)2 ∂Q
1

0

           

kby =  ∫ (R4−4R5 + 6R6 − 4R7 + R8) ∂R ∗
1

0
 ∫ (4 − 48Q + 192Q2 − 288Q3 + 144Q4) ∂Q

1

0
   (13c) 
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kmx =  ∫ ∫ (
∂h

∂R
)

41

0

1

0

dRdQ =   ∫ (
∂hx

∂R
)

4

∂R ∗
1

0

 ∫ hy
4 ∂Q

1

0

                               

kmx =   ∫ (2R − 6R2 + 4R3)4 ∂R ∗
1

0

 ∫ (Q2 − 2Q3+Q4)4 ∂Q
1

0

                    

kmx =   ∫ (16R4 − 192R5 + 992R6 − 2880R7 + 5136R8 − 5760R9 + 3968R10 − 1536R11 +
1

0

256R12) ∂R ∗ ∫ (Q8 − 8Q9 + 28Q10 − 56Q11 + 70Q12 − 56Q13 + 28Q14 − 8Q15 +
1

0

16Q16) ∂Q                                                                                                                           (13d) 

kmxy = ∫ (
∂hx

∂R
)

2

. hx
2 ∂R ∗

1

0

 ∫ (
∂hy

∂Q
)

2

. hy
2 ∂Q

1

0

              

kmxy = ∫ (2R − 6R2 + 4R3)2 ∗ (R − 2R2+R4)2 ∂R ∗
1

0

 ∫ (2Q − 6Q2 + 4Q3)2 ∗ (Q − 2Q2+Q4)2 ∂Q
1

0

                    

kmxy = ∫ (4R6−40R7 + 172R8 − 416R9 + 620R10 − 584R11 + 340R12 − 112R13 + 16R14) ∂R ∗
1

0
 ∫ (4Q6 −

1

0

40Q7 + 172Q8 − 416Q9 + 620Q10 − 584Q11 + 340Q12 − 112Q13 +
16Q14) ∂Q                                                                                                                (13e) 

kmy =  ∫ ∫ (
∂h

∂Q
)

41

0

1

0

dRdQ =  ∫ hx
4 ∂R ∗

1

0

 ∫ (
∂hy

∂Q
)

4

∂Q
1

0

                       

kmy =  ∫ (R2 − 2R3+R4)4 ∂R ∗
1

0

 ∫ (2Q − 6Q2 + 4Q3)4 ∂Q
1

0

                           

kmy =  ∫ (R8 − 8R9 + 28R10 − 56R11 + 70R12 − 56R13 + 28R14 − 8R15 + 16R16) ∂R ∗
1

0
 ∫ (16Q4 −

1

0

192Q5 + 992Q6 − 2880Q7 + 5136Q8 − 5760Q9 + 3968Q10 − 1536Q11 +
256Q12)4 ∂Q                                                                                          (13f) 

kλ =  ∫ ∫ h2
1

0

1

0

dRdQ = ∫ hx
2 ∂R ∗

1

0

 ∫ hy
2 ∂Q

1

0

                                           

kλ = ∫ (R2 − 2R3 + R4)2 ∂R ∗
1

0

 ∫ (Q2 − 2Q3 + Q4)2 ∂Q    
1

0

                                    

kλ = ∫ (4R4 − 4R5 + 6R6 − 4R7 + R8) ∂R ∗
1

0
 ∫ (Q4 − 4Q5 + 6Q6 − 4Q7 + Q8) ∂Q

1

0
                                     (13g) 

Integrating and substituting the values of R (= 0.5) and Q (= 0.5) at the point of maximum deflection, 
into Equations (12) yield the values of stiffnesses presented in Tables 4.5-4.11. 
Similarly, the remaining four plate types are evaluated, and the individual stiffnesses are shown in 
Table-2. 
 

Table-2 Summary of Polynomial-Based Plate Bending and Membrane Stiffnesses 
 

BCs kbx kbxy kby kmx kmxy kmy 

CCCC 0.0012698413 0.0003628118 0.0012698413 0.0000000024 0.0000000005 0.0000000024 

CSSS 0.0361904762 0.0416326531 0.0885714286 0.0000340978 0.0000045749 0.0000449254 

CSCS 0.0076190476 0.0092517007 0.0393650794 0.0000016447 0.0000002610 0.0000019245 

CCSS 0.0135714286 0.0073469388 0.0135714286 0.0000011786 0.0000001515 0.0000011786 

CCCS 0.0028571429 0.0016326531 0.0060317460 0.0000000568 0.0000000086 0.0000000505 
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Table-3 Values of Plates Dynamic Load Stiffness for  kλ (Polynomial) 
 

BCs x-strip y-strip kλR 
For x-strip 

kλQ 

For y-strip 

kλ =  kλR ∗ kλQ 

CCCC CC CC 0.0015873016 0.0015873016 0.000002520 

CSSS SS CS 0.0492063492 0.0075396825 0.000371000 

CSCS SS CC 0.0492063492 0.0015873016 0.000078105 

CCSS CS CS 0.0075396825 0.0075396825 0.000056847 

CCCS CS CC 0.0075396825 0.0015873016 0.000011968 

 
Substituting the individual stiffnesses from Table-2 and the dynamic external load stiffness values from 
Table-3 into Equation 1 for each of the plate types and evaluating yields the specific nonlinear equations 
for the coefficient of resonating frequency as presented in Table-4, and the resonating frequency 
equations for the specific plate types presented in Table-5. If we evaluate the shape profile at the point 
of maximum deflection, ℎ𝑚𝑎𝑥 , and substitute into Equation 9 together with the stiffnesses and evaluate, 
we will have the specific nonlinear resonating frequency equation for each plate type in terms of 
displacement w, as present in Table 6. Consider a square plate, that is, a plate with an aspect ratio of 
unity. The numerical results for the specific plates against w/t are present in Table for frequency 
parameter and Table 8 for nonlinear resonating frequency. 
 

 

RESULTS AND DISCUSSION 

Table-4 presents the coefficient of nonlinear formulated frequency equations for the five plate types 
under consideration, while the nonlinear formulated frequency equations for the five plate types are 
presented in Table-5 in terms of amplitude of displacement and Table-6, in terms of the maximum 
displacement itself.  These are new equations for analysis of thin rectangular plates based on the 
considered plate types. 
 

Table-4 Nonlinear Frequency, 𝖿, Coefficient Equation for the Various Plate Types (Polynomial) 
 

Plate  
Type λx  =  

𝖿

a2
 √

D

ρt
;     where 𝖿 =  √[ 

KbT

kλ

+
3

2

KmT

kλ

(
A

t
)

2

 ] 

 
 
CCCC 

𝖿 =
1

Ƨ4
[{504(Ƨ4 + 1) + 288Ƨ2} + {0.0014498048(Ƨ4 + 1) + 0.0005868258Ƨ2} (

A

t
)

2

]

1
2

      

 
 
CSSS 

𝖿 =
1

a2
[(97.5483870968Ƨ4 + 224.4346349745Ƨ2 + 238.7368421053)

+ (0.1378616303Ƨ4 + 0.0369941212Ƨ2

+ 0.1816389537) (
A

t
)

2

]

1
2

√
D

ρt
       

 
 
CSCS 

𝖿 =
1

a2
[(97.5483870968Ƨ4 + 236.9032258065Ƨ2 + 504)

+ (0.0315858688Ƨ4 + 0.0100233626Ƨ2 + 0.0369600013) (
A

t
)

2

]

1
2
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CCSS 

𝖿 =  
1

a2
[(238.7368421053(Ƨ4 + 1) + 258.4819944598Ƨ2)

+ (0.0310983350(Ƨ4 + 1) + 0.0079936977Ƨ2) (
A

t
)

2

]

1
2

     

 
 
CCCS 

𝖿 =
1

a2
[(238.7368421053Ƨ4 + 272.8421052632Ƨ2 + 504)

+ (0.0071250276Ƨ4 + 0.0021658503Ƨ2 + 0.0063279075) (
A

t
)

2

]

1
2

    

 
Table-5 Linear and Nonlinear Frequency λx   Equations for the Various Plate Types (Polynomial) 

Plate  
Type λx  =  

𝖿

a2
 √

D

ρt
;     where 𝖿 =  √[ 

KbT

kλ

+
3

2

KmT

kλ

(
A

t
)

2

 ] 

 
 
CCCC 

λx  =
1

a2Ƨ2
[{504(Ƨ4 + 1) + 288Ƨ2} + {0.0014498048(Ƨ4 + 1)

+ 0.0005868258Ƨ2} (
A

t
)

2

]

1
2

√
D

ρt
      

 
 
 
CSSS 

λx  =
1

a2Ƨ2
[(97.5483870968Ƨ4 + 224.4346349745Ƨ2 + 238.7368421053)

+ (0.1378616303Ƨ4 + 0.0369941212Ƨ2

+ 0.1816389537) (
A

t
)

2

]

1
2

√
D

ρt
       

 
 
CSCS 

λx  =
1

a2Ƨ2
[(97.5483870968Ƨ4 + 236.9032258065Ƨ2 + 504)

+ (0.0315858688Ƨ4 + 0.0100233626Ƨ2 + 0.0369600013) (
A

t
)

2

]

1
2

√
D

ρt
     

 
 
CCSS 

λx  =  
1

a2Ƨ2
[(238.7368421053(Ƨ4 + 1) + 258.4819944598Ƨ2)

+ (0.0310983350(Ƨ4 + 1) + 0.0079936977Ƨ2) (
A

t
)

2

]

1
2

√
D

ρt
     

 
 
CCCS 

λx  =
1

a2Ƨ2
[(238.7368421053Ƨ4 + 272.8421052632Ƨ2 + 504)

+ (0.0071250276Ƨ4 + 0.0021658503Ƨ2 + 0.0063279075) (
A

t
)

2

]

1
2

√
D

ρt
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Table-6 Nonlinear Frequency λxmax   Equations for the Various Plate Types in terms of Deflection, w. 
(Polynomial) 

Plate  
Type λxMax =  

𝖿w  

a2
 √

D

ρt
;     where 𝖿w  =  √[ 

KbT

kλ

+
3

2

KmT

kλ

1

(hmax)2
(

w

t
)

2

 ] 

 
 
 
CCCC 

λxMax  =
1

a2Ƨ2
[{504(Ƨ4 + 1) + 288Ƨ2}

+ {95.0144088771(Ƨ4 + 1) + 38.4582131320Ƨ2} (
w

t
)

2

]

1
2

√
D

ρt
      

 
 
 
CSSS 

λxMax  =
1

a2Ƨ2
[(97.5483870968Ƨ4 + 224.4346349745Ƨ2 + 238.7368421053)

+ (90.3489980269Ƨ4 + 24.2444672683Ƨ2

+ 119.0389047079) (
w

t
)

2

]

1
2

√
D

ρt
       

 
 
CSCS 

λxMax  =
1

a2Ƨ2
[(97.5483870968Ƨ4 + 236.9032258065Ƨ2 + 504)

+ (82.8004598680Ƨ4 + 26.2756436762Ƨ2

+ 96.8884257826) (
w

t
)

2

]

1
2

√
D

ρt
     

 
 
CCSS 

λxMax  =  
1

a2Ƨ2
[{238.7368421053(Ƨ4 + 1) + 258.4819944598Ƨ2}

+ {127.3787800219(Ƨ4 + 1) + 32.7421855789Ƨ2} (
w

t
)

2

]

1
2

√
D

ρt
     

 
 
CCCS 

λxMax  =
1

a2Ƨ2
[(238.7368421053Ƨ4 + 272.8421052632Ƨ2 + 504)

+ (116.7364530164Ƨ4 + 35.4852920433Ƨ2

+ 103.6764367474) (
w

t
)

2

]

1
2

√
D

ρt
   

 

Table-7 Numerical Values of Frequency Parameter 
𝜌𝜆𝑥

2𝑎4

𝐸𝑡2  for Various Plate Types. 

 𝜌𝜆𝑥
2𝑎4

𝐸𝑡2
=

1

12(1 − ʋ2)𝑘𝜆

[ 𝐾𝑏𝑇 +
3

2
(

𝐴

𝑡
)

2

 𝐾𝑚𝑇] ;    Ƨ =
𝑏

𝑎
 = 1   

w/t CCCC CSSS CSCS CCSS CCCS 

0 118.681 51.348 76.781 67.395 93.002 

0.25 119.989 52.685 77.960 69.041 94.466 

0.5 123.912 56.697 81.497 73.977 98.860 

0.75 130.451 63.383 87.391 82.205 106.183 

1 139.605 72.743 95.643 93.723 116.436 

1.25 151.375 84.778 106.252 108.532 129.617 

1.5 165.760 99.487 119.219 126.633 145.728 

1.75 182.760 116.870 134.544 148.024 164.768 

2 202.376 136.928 152.226 172.706 186.737 

2.25 224.608 159.660 172.266 200.680 211.636 

2.5 249.455 185.066 194.664 231.944 239.464 

2.75 276.917 213.147 219.419 266.499 270.221 

3 306.995 243.902 246.532 304.346 303.907 
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3.25 339.688 277.332 276.003 345.483 340.522 

3.5 374.997 313.436 307.831 389.911 380.067 

3.75 412.921 352.214 342.017 437.630 422.541 

4 453.461 393.666 378.561 488.640 467.944 

4.25 496.616 437.793 417.462 542.941 516.277 

4.5 542.387 484.595 458.721 600.533 567.538 

4.75 590.773 534.071 502.338 661.417 621.729 

5 641.774 586.221 548.312 725.591 678.849 

 
Table-8 Numerical Values of Nonlinear Resonating Frequency Coefficient, 𝘧, of Rectangular Plates for 

Various Plate Types. 

 
𝜆𝑥  =

𝘧

𝑎2
√

𝐷

𝜌𝑡
;             Ƨ =

𝑏

𝑎
 = 1 

 
𝘧 = √[

𝐾𝑏𝑇

𝑘𝜆
 +

3

2

𝐾𝑚𝑇

𝑘𝜆
(

𝐴

𝑡
)

2

 ]   or   𝘧 = √[
𝐾𝑏𝑇

𝑘𝜆
 +

3

2

𝐾𝑚𝑇

𝑘𝜆

1

(ℎ𝑚𝑎𝑥 )
2 (

𝑤

𝑡
)

2

 ] 

w/t CCCC CSSS CSCS CCSS CCCS 

0 36.000 23.680 28.956 27.129 31.868 

0.25 36.198 23.986 29.177 27.458 32.118 

0.5 36.785 24.882 29.832 28.422 32.857 

0.75 37.743 26.309 30.892 29.961 34.052 

1 39.045 28.184 32.317 31.991 35.658 

1.25 40.657 30.426 34.063 34.426 37.622 

1.5 42.545 32.960 36.081 37.186 39.892 

1.75 44.674 35.724 38.330 40.205 42.418 

2 47.010 38.668 40.771 43.428 45.157 

2.25 49.525 41.755 43.372 46.813 48.074 

2.5 52.192 44.955 46.106 50.327 51.137 

2.75 54.990 48.245 48.950 53.946 54.321 

3 57.900 51.608 51.886 57.649 57.608 

3.25 60.905 55.031 54.899 61.422 60.980 

3.5 63.992 58.504 57.979 65.252 64.423 

3.75 67.150 62.018 61.113 69.130 67.928 

4 70.369 65.566 64.295 73.048 71.484 

4.25 73.641 69.143 67.518 76.999 75.085 

4.5 76.960 72.745 70.776 80.980 78.724 

4.75 80.320 76.368 74.064 84.986 82.397 

5 83.715 80.010 77.379 89.014 86.099 

 
The equations are unique and simple to apply. What will change is flexural rigidity due to the young 
modulus of the materials and the Poisson ratio. The numerical values for the frequency parameter and 
nonlinear frequency for the five plates as presented in Tables 7 and 8 respectively indicate that the plate 
sustains additional strength beyond the initial yield point. This is in line with the behavior of ductile 
plates unlike columns, plates do not fail at the initial yields. It is this property that makes the plate very 
useful in aerospace and shipbuilding industries since this property results in lighter weight but higher 
strength. Before the plate starts deflecting or bending, that is at the point w =0, the plate reaches its 
fundamental natural frequency. At this point linear analysis is applicable and the second term of these 
equations becomes equal to zero.  
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Beyond this fundamental frequency value, the plate increases in frequency magnitude as the deflection 
increases. To validate the results of this work, a comparison was carried out between the fundamental 
frequency predicted by these equations for the specific plate types with the results obtained by 
Ibearugbulem et al., (2014) and Leissa and Quta (2011) as presented in Table-9.  From the analysis, it is 
shown that the percentage difference among them is negligible, hence indicating that the formulated 
equations are adequate for predicting the fundamental frequency of thin rectangular plates. In addition, 
the result indicated that a plate clamped at all sides (CCCC) has a higher fundamental frequency than 
a plate mixed with simple support. This implies that a CCCC plate is safer than others since they will 
not easily reach the resonance point. Also, a comparison of the nonlinear frequency of the CCCC plate 
obtained from this equation using a polynomial shape profile with the values obtained using a 
trigonometric shape profile as presented in Table 10 indicated a close match between the two shape 
profiles. From the results, it is shown that the polynomial shape profile is lower bound to the results of 
the trigonometric shape profile with the highest percentage difference of 6.4048, which is still small and 
acceptable within statistical limits. There is a dearth of nonlinear frequency data available for these 
plate types except for the SSSS plate obtained by Levy in 1945. Since the equations predict adequately 
the fundamental frequency of the plates considered and the predicted result agrees with the practical 
behavior of a thin rectangular plate (that is, an increase in frequency beyond the initial yield point), 
then, it is logical to conclude that the formulated equations are adequate to analysis linear and nonlinear 
frequency of thin plates. And that the generally formulated free vibration equation for nonlinear 
frequency analysis applies to these plate types and not just to the SSSS plate only. 
 

Table-9 Comparison of Resonating Natural (Linear) Frequency with those in Literature for Aspect 
Ratio of Unity. 

Plate Type Present work Ibearugbulem et. 
al, 2014 

Leissa & 
Quta, 2011 

%Difference %Difference 

CCCC 36.000 35.967 35.99 0.091751 0.027785 
CSSS 23.680 23.680 23.646 0 0.143788 
CSCS 28.936 28.959 28.951 -0.07942 -0.05181 
CCSS 27.129 27.129 27.06 0 0.254989 
CCCS 31.868 31.868 31.83 0 0.119384 

 
Table-10 Nonlinear Resonating Frequency Parameter values and Nonlinear Resonating Frequency, for 

Aspect Ratio, Ƨ = 1 for CCCC plate. 

w/t ρλ2a4

Et2
 

 

% 
Difference 

 
100(F1-
F2)/F1 

 

 
𝜆𝑀𝑎𝑥  =  

𝖿

a2
∗ √

D

ρt
 

𝖿

= √[
KbT

kλ

 +
3

2

KmT

kλ

1

(ℎmax )
2

(
𝑤

𝑡
)

2

 ] 

%Differenc
e 
 
100(f1-f2)/f1 

 

 Poly. 𝐹1 Trig. 𝐹2   Poly. 𝐹1 Trig. 𝐹2  

0 118.6810 126.8660 -6.8966  36.0000 37.2210 -3.3917 

0.25 119.9890 128.3760 -6.9898  36.1980 37.4410 -3.4339 

0.5 123.9120 132.9050 -7.2576  36.7850 38.0960 -3.5640 

0.75 130.4510 140.4550 -7.6688  37.7430 39.1630 -3.7623 

1 139.6050 151.0250 -8.1802  39.0450 40.6100 -4.0082 

1.25 151.3750 164.6140 -8.7458  40.6570 42.3980 -4.2822 

1.5 165.7600 181.2230 -9.3285  42.5450 44.4860 -4.5622 

1.75 182.7600 200.8530 -9.8999  44.6740 46.8330 -4.8328 

2 202.3760 223.5020 -10.4390  47.0100 49.4030 -5.0904 

2.25 224.6080 249.1710 -10.9359  49.5250 52.1630 -5.3266 
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2.5 249.4550 277.8590 -11.3864  52.1920 55.0840 -5.5411 

2.75 276.9170 309.5680 -11.7909  54.9900 58.1420 -5.7320 

3 306.9950 344.2970 -12.1507  57.9000 61.3170 -5.9016 

3.25 339.6880 382.0450 -12.4694  60.9050 64.5910 -6.0520 

3.5 374.9970 422.8130 -12.7510  63.9920 67.9490 -6.1836 

3.75 412.9210 466.6020 -13.0003  67.1500 71.3810 -6.3008 

4 453.4610 513.4100 -13.2203  70.3690 74.8760 -6.4048 

 
 

 

CONTRIBUTION TO KNOWLEDGE 

 
This work has applied the general formulated linear/nonlinear resonating frequency equation to 

developed new specific linear/nonlinear resonating frequency equations for five thin rectangular plate 

types using both polynomial shape functions. Based on the adequacy of the numerical results, the 

present work has proven that the new general formulated linear/nonlinear resonating frequency 

equation is applicable to thin rectangular plate types other than a plate simply supported all-round 

(SSSS). This will relieve in no small measure the cumbersome effort put by plate analysts and designers 

in solving plate problems. 

 
CONCLUSION  

 
Specific equations for nonlinear free vibration analysis for five plate types have been formulated. The 

numerical results predicted by these equations have shown to be adequate when compared with the 

available data in the literature. The results also, agree with the behavior of thin plates, which is another 

indicator that the equations are adequate. Based on these results, it means the general nonlinear 

frequency equation (Equations 1 and 7) is applicable for the analysis of thin rectangular plates other 

than SSSS plate type and these equations are a simpler, quicker, and improved alternative to the long-

standing von Karman equations for the analysis of plates under large deflection formulated in 1910.  
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