
    

 

Olaye et al., (2025). Advanced Computational Methods for predicting Evaporation Rate of Fe Alloys during Weld Pool Formation. 
Nigeria Journal of Engineering Science Research (NIJESR), 8(1), 171-182. https://doi.org/10.5281/zenodo.17410310 

                   

 

 

 

 

 

 

 

Advanced Computational Methods for predicting Evaporation 

Rate of Fe Alloys during Weld Pool Formation 

 

 1a
Nicholas Chika Ogu, 1bJoseph Ifeanyi Achebo, 2cKessington Osahenrumwen 

Obahiagbon, 1dFrank Omos Uwoghiren, 1eAndrew Ozigagun 
 

1Department of Production Engineering, Faculty of Engineering, University of Benin, Benin City, Nigeria 
2Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Nigeria 

 
Corresponding Author’s: Nicholas Chika Ogu;  chikaeze1000@yahoo.com  

 

 

  

 

 

 

 
 
Keywords: Welding, Iron (Fe), Central composite design, Weld Quality, Alloys  

  

INTRODUCTION 

  

Welding is a vital process in manufacturing and construction, and it relies heavily on the behavior of metals during 

the welding process (Zhang et al., 2020). The evaporation of iron (Fe) alloys is a critical aspect of welding that 

affects the quality of the weld joint [2]. The temperature of the droplets formed during the welding process plays 

a crucial role in influencing the evaporation rates of Fe alloys as they interact with the molten weld pool (Zhu et 

al., 2018). Understanding and controlling this process is essential for optimizing welding parameters and 

achieving high-quality welds. The evaporation of Fe alloys during welding is influenced by various factors, 

including temperature, alloy composition, and welding parameters (Ghaini et al., 2020). The temperature of the 

droplets that form during welding is particularly important (Mamat et al., 2018; Cho et al., 2021). Researchers 

have conducted numerous experimental studies to measure and analyze the evaporation rates of Fe alloys under 

various welding conditions (Chen et al., 2018), as analytical decision-support frameworks, coupled with advanced 

computational methods, enable data-driven insights that improve operational efficiency and facilitate informed 

optimization strategies (Oyejide et al., 2018).  The studies use specialized equipment and techniques to monitor 

alloy evaporation in real-time (Baehr et al., 2018), in which data collected provides valuable insights into the 

evaporation process and its impact on weld quality (Martin et al., 2019). Predicting and optimizing evaporation 

rates during welding is crucial for achieving consistent and high-quality welds (Fotovvati et al., 2018) as 

integrated modelling strategies have proven to have enhanced reliability and practical relevance (Oyejide et al., 

2025). Mathematical models and simulations have been developed to account for variables such as droplet 

temperature, alloy composition, and heat input.  
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Abstract:  The present study addresses the challenge of optimizing welded parameters to achieve optimal Fe content 

by employing expert models in developing an optimal combination of input parameters for high-quality Fe welds using 

tungsten inert gas (TIG) welding. An optimal randomized matrix is developed using the central composite design, 

setting-up the input factors such as the weld current, voltage, and gas flow rate for each experimental run. Response 

Surface Methodology (RSM) and Artificial Neural Network (ANN) were utilized for experimental analysis. The RSM 

approach yielded a mathematical model for optimizing process parameters, following satisfactory diagnostic tests such 

as lack of fit test, sequential sum of squares, goodness of fit, analysis of variance, and surface plots. The optimal solution 

resulted in a current of 185 A, voltage of 20 V, and gas flow rate of 16 L/min, producing a weldment with a Fe content 

of 96.484. ANN evaluation metrics results of R2 values, 0.9498 were compared with RSM-prediction results, R2 values 

of 0.9699. The result showed the RSM outperformed the ANN in effectively modelling and predicting the Fe content. 
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The evaporation rates of Fe alloys have a significant impact on the quality and integrity of welds (Cadiou et al., 

2020; Chen et al., 2020). Excessive evaporation can lead to defects such as porosity and inclusions, which 

compromise weld quality (Bunazivm et al., 2021). By optimizing evaporation rates, it is possible to produce welds 

with improved mechanical properties and enhanced performance (Indhu et al., 2018; Bunazivm et al., 2021; 

Zhang et al., 2022). Paul and Dhar (2024) developed a comprehensive machine learning framework to predict 

sessile droplet evaporation kinetics including the evaporation rate, temperature drop and velocity scale, given 

some set of conditions. They employed deep artificial neural network (ANN), random forests (RF), and extreme 

gradient boosting (XGB) models. Their approach involved cascading output features based on underlying physics, 

which improved prediction accuracy. ANN was superior to others, with a lesser mean absolute error for the 

majority of the target variables. The study showed that ML models, in particular ANNs, can predict the droplet 

evaporation parameters in a physically-consistent manner and can be considered a computationally cheaper 

alternative to full numeric simulations. Rawa et al. (2023) introduced a hybrid method that merges numerical 

simulations with particle-swarm-optimized artificial neural networks to analyse the thermal behaviour and melting 

ratio in pulsed laser welding of stainless-steel alloys. The numerical simulations elucidated how variations in pulse 

duration and frequency modulate the temperature and velocity fields, with Marangoni and buoyancy forces 

emerging as critical contributors. Using an ANN whose topology and learning parameters were refined by Particle 

Swarm Optimization (PSO), it achieved low-error, for the maximum temperature and melting ratio across training, 

validation, and test datasets. This hybrid approach enabled accurate, and faster prediction of key thermal 

parameters in welding processes. Zhang et al. (1993) developed a three-dimensional finite volume model designed 

to replicate fluid flow, droplet transfer, and keyhole dynamics during laser-MIG hybrid welding of the Fe36Ni 

Invar alloy. The approach employed double-ellipsoidal heat distributions for the arc and an adaptive Gauss rotary 

source for the laser, while also incorporating recoil pressure, electromagnetic and Marangoni effects, and 

buoyancy forces. Comparisons with experimental data showed that the model reliably reproduced temperature 

distributions and final weld profiles, yielding valuable information for refining welding parameters of Fe alloys. 

Despite advancements in understanding alloy evaporation, challenges remain. The behavior of Fe alloys at high 

temperatures is complex, and further research is needed to fully understand and control the process (Wang et al., 

2023). Accurate data and advanced modeling techniques are required to improve predictive capabilities (Kaiser 

et al., 2018). Future research may focus on developing new welding methods and technologies that offer greater 

control over alloy evaporation. Optimizing and predicting evaporation rates of Fe alloys influenced by droplet 

temperature during weld pool formation is essential for advancing welding technology and improving weld 

quality. The complex relationship between droplet temperature and alloy evaporation underscores the importance 

of this area of study. Ongoing research continues to refine welding processes and enhance the quality of welds, 

contributing to the development of more reliable and efficient manufacturing and construction methods. 

The key contributions of the present study are as follows: 

i. This research introduces a robust computational framework for optimising and predicting the evaporation 

rates of Fe alloys during welding, as a function of the droplet temperature. The model is developed based 

on RSM and ANN, which provides the ability to capture non-linear relationship in weld pool dynamics 

and enhances the accuracy of prediction as well as understanding the process. 

ii. The findings indicated that the model developed using RSM provided an accurate fit to experimental 

data, as indicated by high R² values, and favourable goodness of fit diagnostics, including predicted and 

adjusted R² in close agreement and an adequate signal-to-noise ratio. Simultaneously the implementation 

of ANN demonstrated the capability of machine learning to capture complex patterns in the dataset, 

offering a computationally efficient alternative to traditional physical simulations for forecasting key 

welding response variables.  

iii. The reliability and robustness of the established models were verified by model diagnostics such as lack 

of fit tests, residual analysis, and Cook’s distance analysis. This systematic approach establishes a 

dependable predictive tool for weld quality optimization, directly supporting enhanced operational 

control and defect minimization in Fe alloy welding applications. 

 

The remaining sections of this paper is organised as follows. Section 2 describes the experimental design, which 

includes the selection of input parameters, experimental setup, and the development of both RSM and ANN 

models. Section 3 presents the results and discussion, featuring an in-depth assessment of model performance, 

diagnostic plots, and comparison of predictive accuracy between the proposed computational methods. Section 4 

concludes the study by outlining the implications of the findings, potential applications for quality assurance in 

welding processes, and recommendations for future research to further refine computational modelling of alloy 

evaporation dynamics. 
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MATERIALS AND METHODS  
 

2.1 Design of Experiment 
Design of Experiments (DOE) is a powerful analysis tool for modelling and analyzing the influence of multiple 

control factors on the performance output. DOE refers to planning, designing and analyzing an experiment so that 

valid and objective conclusions can be drawn effectively and efficiently. If a certain quality feature of a product, 

the response, is being affected by many variables, the best strategy is then to design an experiment in order to 

achieve valid, reliable and sound conclusions in an effective, efficient and economical manner. It is important to 

know that some factors may have strong effects on the response, others may have moderate effects and some have 

no effects at all. In manufacturing, experiments are conducted to improve the understanding and knowledge of 

different engineering processes with the aim of producing high quality products. 

  

2.2 Materials Selection and Welding Equipment 
The material selected for this experiment is a mild steel plate. Mild steel is widely applied in the manufacture of 

different engineering structures. It is very much available and affordable. The physical properties and base metal 

chemistry of mild steel is suitable for most engineering needs. The tungsten inert gas welding process is chosen 

because it produces a homogenous weld joint. TIG welds are strong and possess relatively high corrosion 

resistance compared to other metals. Mild steel plate of thickness 10 mm was selected as material used for the 

experiment. The mild steel plate was cut with dimension of 60 mm x 40 mm with the help of power hacksaw and 

grinded at the edge to smoothen the surfaces to be joined. The surfaces of the coupon were polished with emery 

paper, thereafter the mild steel plates were fixed on the work table with flexible clamp to weld the joints of the 

specimen. A TIG welding process was used with Alternate Current (AC) to perform the experiments as it 

concentrates the heat in the welding area, using 100% argon gas as the shielding gas. For each experimental runs 

5 specimen was used, and the average of the 5 experimental readings were recorded for the 20 runs.  

 

2.3 Response Surface Methodology 
RSM Engineers often search for the conditions that would optimize the process of interest. In other words, they 

want to determine the values of the process input parameters at which the responses reach their optimum. The 

optimum could be either a minimum or a maximum of a particular function in terms of the process input 

parameters. RSM is one of the optimization techniques currently in widespread usage to describe the performance 

of the welding process and find the optimum of the responses of interest. RSM is a set of mathematical and 

statistical techniques that are useful for modelling and predicting the response of interest affected by several input 

variables with the aim of optimizing this response (Kim et al., 2025). RSM also specifies the relationships among 

one or more measured responses and the essential controllable input factors. RSM is used to develop empirical 

model, commonly called response surface, for the response of a process in terms of the relevant controllable 

factors (Veza et al., 2023). RSM determines the operating conditions that produce the optimum response. 

Response Surface Methodology allows you to specify and fit a model up to the second order, RSM fits a model 

and provides the ANOVA and the 'Lack of Fit' test separately when there is more than one response. Contour and 

Surface plots of each response for pairs of factors are also produced. The aim of the response surface are to help 

understand the topography of the surface plot using simple maximum or minimum, saddles and ridges 3D 

diagrams and to find the region with the optimum response using contour plots. 

 

2.4   Artificial Neural Networks  
Neural network are data mining tool for finding unknown patterns in databases, a neural network is a massively 

parallel distributed processor that has a natural propensity for storing experimental knowledge and making it 

available for use (Lian and Chen, 2024). It resembles the brain in two respects. Knowledge is acquired by the 

network through a learning process, Interneuron connection strengths known as synaptic weights are used to store 

the knowledge. An elementary neuron with R input is weighted with an appropriate w. The sum of the weighted 

inputs and the bias forms the input to the transfer function f (Abiodun et al., 2019). Neurons can use any 

differentiable transfer function f to generate their output. Multilayer networks often use the log-sigmoid transfer 

function logsig.  
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RESULTS AND DISCUSSION 

 
3.1 Modelling and Prediction using Response Surface Methodology (RSM) 
In this study, twenty experimental runs were carried out, each experimental run comprising the current, voltage 

and gas flow rate, used to join two pieces of mild steel plates measuring 60 x 40 x 10mm. The Fe was measured 

respectively. In validation of the suitability of the quadratic model in analyzing the experimental data, the 

sequential model sum of squares was calculated for Fe content responses as presented in Table-1. 

 

Table-1 Sequential model sum of square for Fe 

Source Sum of Squares df Mean Square F-value p-value  

Mean vs Total 1.678 x 105 1 1.678 x 105    

Linear vs Mean 154.36 3 51.45 1.67 0.2130  

2FI vs Linear 100.00 3 33.33 1.10 0.3827  
Quadratic vs 2FI 372.98 3 124.33 63.90 < 0.0001 Suggested 

Cubic vs Quadratic 2.64 4 0.66 0.24 0.9086 Aliased 
Residual 16.82 6 2.80    

Total 1.685 x 105 20 8422.90    

 

The sequential model sum of squares table shows the accumulating improvement in the model fit as terms are 

added. Based on the calculated sequential model sum of square, the highest order polynomial where the additional 

terms are significant and the model is not aliased was selected as the best fit. From the results of Table 1, it was 

observed that the cubic polynomial was aliased hence cannot be employed to fit the final model. In addition, the 

quadratic and 2FI model were suggested as the best fit thus justifying the use of quadratic polynomial in this 

analysis. In testing how well the quadratic model can explain the underlying variation associated with the 

experimental data, the lack of fit test was estimated for each of the responses. Model with significant lack of fit 

cannot be employed for prediction. Results of the computed lack of fit for the Fe is presented in Table-2. 

 

Table-2 Lack of fit test for Fe 

Source Sum of Squares df Mean Square F-value p-value  

Linear 477.11 11 43.37 14.14 0.0045  

2FI 377.11 8 47.14 15.37 0.0040  

Quadratic 4.12 5 0.8244 0.2688 0.9122 Suggested 

Cubic 1.48 1 1.48 0.4835 0.5178 Aliased 

Pure Error 15.33 5 3.07    

 

The results of Table 2 shows that the quadratic polynomial had a non-significant lack of fit and was suggest for 

model analysis while the cubic polynomial had a significand lack of fit hence aliased to model analysis. 

The model statistics computed for Fe response based on the model sources is presented in Table 3. 

 

Table-3 Model summary statistics for Fe 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 5.55 0.2387 0.0959 -0.1398 737.23  

2FI 5.49 0.3933 0.1132 -0.5787 1021.12  
Quadratic 1.39 0.9699 0.9428 0.9176 53.30 Suggested 

Cubic 1.67 0.9740 0.9177 0.4605 348.92 Aliased 

 

The summary statistics of model fit shows the standard deviation, the r-squared, adjusted r-squared, predicted r-

squared and predicted error sum of square (PRESS) statistic for each complete model. Low standard deviation, 

R-Squared near one and relatively low PRESS is the optimum criteria for defining the best model source. Based 

on the results of Table-3, the quadratic polynomial model was suggested while the cubic polynomial model was 

aliased hence, the quadratic polynomial model was selected for this analysis. In validating the adequacy of the 

quadratic model based on its ability to minimize the Fe content, the goodness of fit statistics is presented in Table-

4. 

 

Table-4 Goodness of Fit Statistics for Fe 

Std. Dev. 1.39  R² 0.9699 

Mean 91.60  Adjusted R² 0.9428 

C.V. % 1.52  Predicted R² 0.9176 

   Adeq Precision 19.2951 
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The Predicted R² of 0.9176 is in reasonable agreement with the Adjusted R² of 0.9428; i.e. the difference is less 

than 0.2. Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of 19.295 

indicates an adequate signal. This model can be used to navigate the design space. In accepting any model, its 

satisfactoriness must first be checked by an appropriate statistical analysis output. To diagnose the statistical 

properties of the response surface model, the normal probability plot of residual presented in Fig. 1. 

 
Fig.1 Normal probability plot of studentized residuals for Fe 

 

It can be observed that the points follow a straight line despite the slight scatter. There is no defined pattern like 

an ‘s-shaped’ curve aside from the linear trend. This indicates that the residuals are normally distributed and no 

transformation of the response data is required for better analysis.  The normal probability plot of studentized 

residuals was employed to assess the normality of the calculated residuals. The normal probability plot of 

residuals, which is the number of standard deviations of actual values based on the predicted values was employed 

to ascertain if the residuals (observed - predicted) follows a normal distribution. It is the most significant 

assumption for checking the sufficiency of a statistical model. Result of Fig. 1 revealed that the computed residuals 

are approximately normally distributed an indication that the model developed is satisfactory. A plot of residuals 

and the predicted to detect the presence of mega patterns or expanding variance was produced for Fe which is 

shown in Fig. 2. 

 
Fig. 2 Plot of Residual vs Predicted for Fe 

 

As can be observed, the graph is a random scatter indicating a range of constant residuals across the graph. In 

order to detect a value or group of values that are not easily detected by the model, the predicted values are plotted 

against the actual values, for Fe content which is shown in Fig. 3. 
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Fig. 3 Plot of Predicted Vs Actual for Fe 

 

As can be seen from the graph, the points are close to the line of fit. The model essentially is able to predict most 

of the data points.  In determining the presence of a possible outlier in the experimental data, the cook’s distance 

plot was generated for the different responses. The cook’s distance is a measure of how much the regression would 

change if the outlier is omitted from the analysis. A point that has a very high distance value relative to the other 

points may be an outlier and should be investigated. The generated cook’s distance for Fe is presented in Fig. 4. 

 

 
Fig. 4 Generated cook’s distance for Fe 

 

The cook’s distance plot has an upper bound of 1.00 and a lower bound of 0.00. Experimental values smaller than 

the lower bound or greater than the upper bounds are considered as outliers and must be properly investigated. 

Results of Figure 4 indicate that the data used for this analysis are devoid of possible outliers thus revealing the 

adequacy of the experimental data. In studying the effects of combined current and voltage on the Fe content, 3D 

surfaces plots presented in Fig. 5 was generated as follows. 

 

 
Fig. 5 Effect of current and voltage on Fe 
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Fig. 5 above shows the effect of current and voltage has on Fe. In studying the effects of gas flow rate and current 

on the Fe content, 3D surfaces plots presented in Fig. 6 was generated as follows. 

 

 
Fig. 6 Effect of current and gas flow rate on Fe 

 

In studying the effects of gas flow rate and voltage on the Fe content 3D surface plots presented in Figure 7 was 

generated as follows: 

 

 
Fig. 7 Effect of voltage and gas flow rate on Fe 

 

The 3D surface plots as observed in Figs. 5-7, shows the relationship between the input variables (current, voltage 

and gas flow rate) against the response variable, Fe. It is a 3-dimensional surface plot which was employed to give 

a clearer concept of the response surface. Although not as useful as the contour plot for establishing responses 

values and coordinates, this view may provide a clearer picture of the surface. As the color of the curved surface 

gets darker, the Fe content decreases proportionately. The presence of a colored hole at the middle of the upper 

surface gave a clue that more points lightly shaded for easier identification fell below the surface.  

 

3.2 Modelling and Prediction of Fe using Artificial Neural Network (ANN) 
In Matlab, APPS is selected, then Neural Net Fitting to begin the analysis process. To begin, we have to import 

the data initially loaded into Matlab into the Neural network fitting space. The improved second order method of 

gradient also known as Levenberg Marquardt Back Propagation training algorithm is selected as the best learning 

rule and was therefore adopted in designing the network architecture.  The input layer of the network uses the 

hyparbolic targent (tan-sigmoid) transfer function to calculate the layer output from the network input while the 

output layer uses the linear (purelin) transfer function. The network generation process divides the input data into 

training data sets, validation and testing. For this study, 70% of the data was employed to perform the network 

training, 15% for validating the network while the remaining 15% was used to test the performance of the network 

at a maximum training cycle of 1000 epochs was used. Trainlm is a network training function that updates weight 

and bias values according to Levenberg-Marquardt optimization.  
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Trainlm is often the fastest back propagation algorithm in the toolbox, and is highly recommended as a first-choice 

supervised algorithm, although it does require more memory than other algorithms. The Artificial Neural Network 

architecture is 3-5-1, the network diagram generated for the prediction of Fe using the back propagation neural 

network is presented in Fig. 8. 

 

 
Fig. 8 Model summary for predicting Fe 

 

In the network training diagram of Figure 8, it was observed that the network performance was 211. Validation 

checks of six (6) was recorded out of six (6). However, this is expected since the issue of weight biased had been 

addressed via normalization of the raw data. A performance evaluation plot which shows the progress of training, 

validation and testing is presented in Fig. 9. 

 

 
Fig. 9 Performance curve of trained network for predicting Fe 

 

In the performance plot of Fig. 9, no evidence of over fitting was observed. In addition, similar trend was observed 

in the behaviour of the training, validation and testing curve which is expected since the raw data were normalized 

before use. Lower mean square error is a fundamental criterion used to determine the training accuracy of a 

network. An error value of 1.1256 at epoch 3 is evidence of a network with strong capacity to predict the Fe. The 

training state, which shows the gradient function, the training gain (Mu) and the validation check, is presented in 

Fig. 10. 
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Fig. 10 Neural network training state for predicting Fe 

 

Back propagation is a method used in artificial neural networks to calculate the error contribution of each neuron 

after a batch of data training. Technically, the neural network calculates the gradient of the loss function to explain 

the error contributions of each of the selected neurons. Lower error is better. Computed gradient value of 2.5756e-

08 as observed in Figure 10 indicates that the error contributions of each selected neuron is very minimal. 

Momentum gain (Mu) is the control parameter for the algorithm used to train the neural network. It is the training 

gains and its value must be less than unity. Momentum gains of 1e-08 shows a network with high capacity to 

predict the Fe. The regression plot which shows the correlation between the input variables (current, voltage and 

gas flow rate) and the target variable Fe coupled with the progress of training, validation and testing is presented 

in Fig.11. 

 

 
Fig. 11 Regression plot showing the progress of training, validation and testing 
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Based on the computed values of the correlation coefficient (R) as observed in Fig. 11, it was concluded that the 

network has been accurately trained and can be employed to predict the Fe. Table-5 below shows the ANN 

prediction for Fe. 

 

Table-5 ANN Prediction for Fe 

S/N Current Voltage Gas flow rate Fe Fe_ANN 

1 185 21.5 16.5 99 93 

2 200 23 18 86 84 

3 185 21.5 16.5 99 93 

4 170 23 15 87 92 

5 200 20 15 90 88 

6 159.8 21.5 16.5 91 88 

7 210.2 21.5 16.5 80 72 

8 185 18.9 16.5 92 93 

9 185 24.0 16.5 90 92 

10 170 20 18 91 90 

11 185 21.5 16.5 96 93 

12 170 20 15 95 91 

13 185 21.5 16.5 99 93 

14 200 20 18 78 82 

15 170 23 18 93 93 

16 185 21.5 19 91 92 

17 185 21.5 16.5 95 93 

18 185 21.5 13.9 94 91 

19 185 21.5 16.5 98 93 

20 200 23 15 88 89 

 

 

CONCLUSION 
 

A close examination of the molten evaporation rate and droplet temperature required for Fe during 
globular to spray was experimented with carefully selecting the welding parameters using these 
factors; welding current, welding voltage and gas flow rate to predict and to optimize the evaporation 
rates of Fe alloys required for deep penetration using response surface method. The parameters having 
the most significant effect on Fe content and transfer modes are welding current, welding voltage and 
gas flow rate; to achieve a better weld with deep penetration and less spatter considering the transfer 
mode (spray), the current which controls the heat input should be controlled to range of about 
185.175Amp, voltage of 20Volts and gas flow rate of 15.959 to give Fe of 96.484. The study shows that 
employing computational techniques such as the RSM and ANN for optimizing and predicting 
evaporation rates of Fe alloys considering droplet temperature in welding is a significant approach for 
enhancing weld quality and advancing manufacturing processes. The following conclusions can be 
deduced from this study: 

(i). The findings of this study indicate that RSM is a highly efficient and reliable approach for 
prediction and optimisation of the output parameter (Fe) of TIG mild steel weld. The ability of 
RSM to offer a more exact interpretation of the experimental results seemed to be reasonable 
once the predicted R2 and adjusted-R2 had a good correlation, which was used to support the 
equation in the second-order polynomial model. This allows engineers to select optimum 
operating conditions to achieve accurate productivity and quality goals. 
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(ii). Effective modelling and control of evaporation rates directly such as porosity and inclusions. 
By accurately predicting how droplet temperature impacts evaporation, the study provides a 
pathway to minimize such problems in welding and, consequently, to create a weld with better 
mechanical and structural properties.  

(iii). The integration of RSM and ANNs into welding analysis proves that there are significant 
possibilities of the same (for industrial applications). This optimisation method provides fast, 
data-driven process approach, offering a computationally efficient alternative to resource-
intensive experimental and purely numerical techniques. Machine learning models, 
particularly ANN, delivered high predictive reliability with lower mean absolute errors, 
supporting robust process control with considerably reducing the number of unnecessary trial-
and-error experiments. 

 
The findings contribute to the knowledge required for the development of decentralized and intelligent 
welding systems by illustrating how more sophisticated computational techniques can be employed to 
re-conceptualize the evaluation and optimization of key welding parameters. This paves the way for 
robust, high-quality, and defect-minimized fabrication in industrial settings. Further studies should 
look into areas such as investigating the application of hybrid machine learning approaches and real-
time monitoring in large-scale industrial welding environments, as well as using different alloy systems 
to validate and expand the predictive models. 
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