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INTRODUCTION

Welding is a vital process in manufacturing and construction, and it relies heavily on the behavior of metals during
the welding process (Zhang et al., 2020). The evaporation of iron (Fe) alloys is a critical aspect of welding that
affects the quality of the weld joint [2]. The temperature of the droplets formed during the welding process plays
a crucial role in influencing the evaporation rates of Fe alloys as they interact with the molten weld pool (Zhu e?
al., 2018). Understanding and controlling this process is essential for optimizing welding parameters and
achieving high-quality welds. The evaporation of Fe alloys during welding is influenced by various factors,
including temperature, alloy composition, and welding parameters (Ghaini ez al., 2020). The temperature of the
droplets that form during welding is particularly important (Mamat et al., 2018; Cho et al., 2021). Researchers
have conducted numerous experimental studies to measure and analyze the evaporation rates of Fe alloys under
various welding conditions (Chen et al., 2018), as analytical decision-support frameworks, coupled with advanced
computational methods, enable data-driven insights that improve operational efficiency and facilitate informed
optimization strategies (Oyejide ef al., 2018). The studies use specialized equipment and techniques to monitor
alloy evaporation in real-time (Baehr et al., 2018), in which data collected provides valuable insights into the
evaporation process and its impact on weld quality (Martin et al., 2019). Predicting and optimizing evaporation
rates during welding is crucial for achieving consistent and high-quality welds (Fotovvati et al, 2018) as
integrated modelling strategies have proven to have enhanced reliability and practical relevance (Oyejide ef al.,
2025). Mathematical models and simulations have been developed to account for variables such as droplet
temperature, alloy composition, and heat input.
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The evaporation rates of Fe alloys have a significant impact on the quality and integrity of welds (Cadiou ef al.,
2020; Chen et al., 2020). Excessive evaporation can lead to defects such as porosity and inclusions, which
compromise weld quality (Bunazivm et al., 2021). By optimizing evaporation rates, it is possible to produce welds
with improved mechanical properties and enhanced performance (Indhu ef al, 2018; Bunazivm et al, 2021;
Zhang et al., 2022). Paul and Dhar (2024) developed a comprehensive machine learning framework to predict
sessile droplet evaporation kinetics including the evaporation rate, temperature drop and velocity scale, given
some set of conditions. They employed deep artificial neural network (ANN), random forests (RF), and extreme
gradient boosting (XGB) models. Their approach involved cascading output features based on underlying physics,
which improved prediction accuracy. ANN was superior to others, with a lesser mean absolute error for the
majority of the target variables. The study showed that ML models, in particular ANNs, can predict the droplet
evaporation parameters in a physically-consistent manner and can be considered a computationally cheaper
alternative to full numeric simulations. Rawa et al. (2023) introduced a hybrid method that merges numerical
simulations with particle-swarm-optimized artificial neural networks to analyse the thermal behaviour and melting
ratio in pulsed laser welding of stainless-steel alloys. The numerical simulations elucidated how variations in pulse
duration and frequency modulate the temperature and velocity fields, with Marangoni and buoyancy forces
emerging as critical contributors. Using an ANN whose topology and learning parameters were refined by Particle
Swarm Optimization (PSO), it achieved low-error, for the maximum temperature and melting ratio across training,
validation, and test datasets. This hybrid approach enabled accurate, and faster prediction of key thermal
parameters in welding processes. Zhang et al. (1993) developed a three-dimensional finite volume model designed
to replicate fluid flow, droplet transfer, and keyhole dynamics during laser-MIG hybrid welding of the Fe36Ni
Invar alloy. The approach employed double-ellipsoidal heat distributions for the arc and an adaptive Gauss rotary
source for the laser, while also incorporating recoil pressure, electromagnetic and Marangoni effects, and
buoyancy forces. Comparisons with experimental data showed that the model reliably reproduced temperature
distributions and final weld profiles, yielding valuable information for refining welding parameters of Fe alloys.
Despite advancements in understanding alloy evaporation, challenges remain. The behavior of Fe alloys at high
temperatures is complex, and further research is needed to fully understand and control the process (Wang et al.,
2023). Accurate data and advanced modeling techniques are required to improve predictive capabilities (Kaiser
et al., 2018). Future research may focus on developing new welding methods and technologies that offer greater
control over alloy evaporation. Optimizing and predicting evaporation rates of Fe alloys influenced by droplet
temperature during weld pool formation is essential for advancing welding technology and improving weld
quality. The complex relationship between droplet temperature and alloy evaporation underscores the importance
of this area of study. Ongoing research continues to refine welding processes and enhance the quality of welds,
contributing to the development of more reliable and efficient manufacturing and construction methods.

The key contributions of the present study are as follows:

i.  This research introduces a robust computational framework for optimising and predicting the evaporation
rates of Fe alloys during welding, as a function of the droplet temperature. The model is developed based
on RSM and ANN, which provides the ability to capture non-linear relationship in weld pool dynamics
and enhances the accuracy of prediction as well as understanding the process.

ii. The findings indicated that the model developed using RSM provided an accurate fit to experimental
data, as indicated by high R? values, and favourable goodness of fit diagnostics, including predicted and
adjusted R? in close agreement and an adequate signal-to-noise ratio. Simultaneously the implementation
of ANN demonstrated the capability of machine learning to capture complex patterns in the dataset,
offering a computationally efficient alternative to traditional physical simulations for forecasting key
welding response variables.

iii. The reliability and robustness of the established models were verified by model diagnostics such as lack
of fit tests, residual analysis, and Cook’s distance analysis. This systematic approach establishes a
dependable predictive tool for weld quality optimization, directly supporting enhanced operational
control and defect minimization in Fe alloy welding applications.

The remaining sections of this paper is organised as follows. Section 2 describes the experimental design, which
includes the selection of input parameters, experimental setup, and the development of both RSM and ANN
models. Section 3 presents the results and discussion, featuring an in-depth assessment of model performance,
diagnostic plots, and comparison of predictive accuracy between the proposed computational methods. Section 4
concludes the study by outlining the implications of the findings, potential applications for quality assurance in
welding processes, and recommendations for future research to further refine computational modelling of alloy
evaporation dynamics.
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MATERIALS AND METHODS

2.1 Design of Experiment

Design of Experiments (DOE) is a powerful analysis tool for modelling and analyzing the influence of multiple
control factors on the performance output. DOE refers to planning, designing and analyzing an experiment so that
valid and objective conclusions can be drawn effectively and efficiently. If a certain quality feature of a product,
the response, is being affected by many variables, the best strategy is then to design an experiment in order to
achieve valid, reliable and sound conclusions in an effective, efficient and economical manner. It is important to
know that some factors may have strong effects on the response, others may have moderate effects and some have
no effects at all. In manufacturing, experiments are conducted to improve the understanding and knowledge of
different engineering processes with the aim of producing high quality products.

2.2 Materials Selection and Welding Equipment

The material selected for this experiment is a mild steel plate. Mild steel is widely applied in the manufacture of
different engineering structures. It is very much available and affordable. The physical properties and base metal
chemistry of mild steel is suitable for most engineering needs. The tungsten inert gas welding process is chosen
because it produces a homogenous weld joint. TIG welds are strong and possess relatively high corrosion
resistance compared to other metals. Mild steel plate of thickness 10 mm was selected as material used for the
experiment. The mild steel plate was cut with dimension of 60 mm x 40 mm with the help of power hacksaw and
grinded at the edge to smoothen the surfaces to be joined. The surfaces of the coupon were polished with emery
paper, thereafter the mild steel plates were fixed on the work table with flexible clamp to weld the joints of the
specimen. A TIG welding process was used with Alternate Current (AC) to perform the experiments as it
concentrates the heat in the welding area, using 100% argon gas as the shielding gas. For each experimental runs
5 specimen was used, and the average of the 5 experimental readings were recorded for the 20 runs.

2.3 Response Surface Methodology

RSM Engineers often search for the conditions that would optimize the process of interest. In other words, they
want to determine the values of the process input parameters at which the responses reach their optimum. The
optimum could be either a minimum or a maximum of a particular function in terms of the process input
parameters. RSM is one of the optimization techniques currently in widespread usage to describe the performance
of the welding process and find the optimum of the responses of interest. RSM is a set of mathematical and
statistical techniques that are useful for modelling and predicting the response of interest affected by several input
variables with the aim of optimizing this response (Kim et al., 2025). RSM also specifies the relationships among
one or more measured responses and the essential controllable input factors. RSM is used to develop empirical
model, commonly called response surface, for the response of a process in terms of the relevant controllable
factors (Veza et al., 2023). RSM determines the operating conditions that produce the optimum response.
Response Surface Methodology allows you to specify and fit a model up to the second order, RSM fits a model
and provides the ANOVA and the 'Lack of Fit' test separately when there is more than one response. Contour and
Surface plots of each response for pairs of factors are also produced. The aim of the response surface are to help
understand the topography of the surface plot using simple maximum or minimum, saddles and ridges 3D
diagrams and to find the region with the optimum response using contour plots.

2.4 Artificial Neural Networks

Neural network are data mining tool for finding unknown patterns in databases, a neural network is a massively
parallel distributed processor that has a natural propensity for storing experimental knowledge and making it
available for use (Lian and Chen, 2024). It resembles the brain in two respects. Knowledge is acquired by the
network through a learning process, Interneuron connection strengths known as synaptic weights are used to store
the knowledge. An elementary neuron with R input is weighted with an appropriate w. The sum of the weighted
inputs and the bias forms the input to the transfer function f (Abiodun et al., 2019). Neurons can use any
differentiable transfer function f'to generate their output. Multilayer networks often use the log-sigmoid transfer
function logsig.
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RESULTS AND DISCUSSION

3.1 Modelling and Prediction using Response Surface Methodology (RSM)

In this study, twenty experimental runs were carried out, each experimental run comprising the current, voltage
and gas flow rate, used to join two pieces of mild steel plates measuring 60 x 40 x 10mm. The Fe was measured
respectively. In validation of the suitability of the quadratic model in analyzing the experimental data, the
sequential model sum of squares was calculated for Fe content responses as presented in Table-1.

Table-1 Sequential model sum of square for Fe

Source Sum of Squares df Mean Square F-value p-value
Mean vs Total 1.678 x 10° 1 1.678 x 10°
Linear vs Mean 154.36 3 51.45 1.67 0.2130
2FI vs Linear 100.00 3 33.33 1.10 0.3827
Quadratic vs 2F1 372.98 3 124.33 63.90 <0.0001 Suggested
Cubic vs Quadratic 2.64 4 0.66 0.24 0.9086 Aliased
Residual 16.82 6 2.80
20 8422.90

Total 1.685x 10°

The sequential model sum of squares table shows the accumulating improvement in the model fit as terms are
added. Based on the calculated sequential model sum of square, the highest order polynomial where the additional
terms are significant and the model is not aliased was selected as the best fit. From the results of Table 1, it was
observed that the cubic polynomial was aliased hence cannot be employed to fit the final model. In addition, the
quadratic and 2FI model were suggested as the best fit thus justifying the use of quadratic polynomial in this
analysis. In testing how well the quadratic model can explain the underlying variation associated with the
experimental data, the lack of fit test was estimated for each of the responses. Model with significant lack of fit
cannot be employed for prediction. Results of the computed lack of fit for the Fe is presented in Table-2.

Table-2 Lack of fit test for Fe

Source Sum of Squares  df Mean Square F-value p-value
Linear 477.11 11 43.37 14.14 0.0045
2FI 377.11 8 47.14 15.37 0.0040
Quadratic 4.12 5 0.8244 0.2688 0.9122 Suggested
Cubic 1.48 1 1.48 0.4835 0.5178 Aliased
5 3.07

Pure Error 15.33

The results of Table 2 shows that the quadratic polynomial had a non-significant lack of fit and was suggest for
model analysis while the cubic polynomial had a significand lack of fit hence aliased to model analysis.
The model statistics computed for Fe response based on the model sources is presented in Table 3.

Table-3 Model summary statistics for Fe

Source Std. Dev. R? Adjusted R? Predicted R? PRESS

Linear 5.55 0.2387 0.0959 -0.1398 737.23

2FI 5.49 0.3933 0.1132 -0.5787 1021.12

Quadratic 1.39 0.9699 0.9428 0.9176 53.30 Suggested

Cubic 1.67 0.9740 09177 0.4605 348.92 Aliased

The summary statistics of model fit shows the standard deviation, the r-squared, adjusted r-squared, predicted r-
squared and predicted error sum of square (PRESS) statistic for each complete model. Low standard deviation,
R-Squared near one and relatively low PRESS is the optimum criteria for defining the best model source. Based
on the results of Table-3, the quadratic polynomial model was suggested while the cubic polynomial model was
aliased hence, the quadratic polynomial model was selected for this analysis. In validating the adequacy of the
quadratic model based on its ability to minimize the Fe content, the goodness of fit statistics is presented in Table-
4.

Table-4 Goodness of Fit Statistics for Fe
Std. Dev. 1.39 R2 0.9699

Mean 91.60 Adjusted R? 0.9428
CV.% 1.52 Predicted R? 0.9176
Adeq Precision 19.2951
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The Predicted R? of 0.9176 is in reasonable agreement with the Adjusted R? of 0.9428; i.e. the difference is less
than 0.2. Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of 19.295
indicates an adequate signal. This model can be used to navigate the design space. In accepting any model, its
satisfactoriness must first be checked by an appropriate statistical analysis output. To diagnose the statistical
properties of the response surface model, the normal probability plot of residual presented in Fig. 1.
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Fe

Color peoints by value of
Mn: 3% —
0.26 1.64 4
[ 1 m
95—
= o
90 =
=
E |
z a0 ¢ s
2 ™ m
-1
. g
o 50
: !
g
5 o <
4
B ]
¢ =
103 a
3 L
5 3
] ]
1~

-300 -200 -100 0.00 100 200
Externally Studentized Residuals

Fig.1 Normal probability plot of studentized residuals for Fe

It can be observed that the points follow a straight line despite the slight scatter. There is no defined pattern like
an ‘s-shaped’ curve aside from the linear trend. This indicates that the residuals are normally distributed and no
transformation of the response data is required for better analysis. The normal probability plot of studentized
residuals was employed to assess the normality of the calculated residuals. The normal probability plot of
residuals, which is the number of standard deviations of actual values based on the predicted values was employed
to ascertain if the residuals (observed - predicted) follows a normal distribution. It is the most significant
assumption for checking the sufficiency of a statistical model. Result of Fig. 1 revealed that the computed residuals
are approximately normally distributed an indication that the model developed is satisfactory. A plot of residuals
and the predicted to detect the presence of mega patterns or expanding variance was produced for Fe which is
shown in Fig. 2.
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Fig. 2 Plot of Residual vs Predicted for Fe

As can be observed, the graph is a random scatter indicating a range of constant residuals across the graph. In
order to detect a value or group of values that are not easily detected by the model, the predicted values are plotted
against the actual values, for Fe content which is shown in Fig. 3.
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Predicted vs. Actual
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Fig. 3 Plot of Predicted Vs Actual for Fe

As can be seen from the graph, the points are close to the line of fit. The model essentially is able to predict most
of the data points. In determining the presence of a possible outlier in the experimental data, the cook’s distance
plot was generated for the different responses. The cook’s distance is a measure of how much the regression would
change if the outlier is omitted from the analysis. A point that has a very high distance value relative to the other
points may be an outlier and should be investigated. The generated cook’s distance for Fe is presented in Fig. 4.

Cook's Distance
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Fig. 4 Generated cook’s distance for Fe

The cook’s distance plot has an upper bound of 1.00 and a lower bound of 0.00. Experimental values smaller than
the lower bound or greater than the upper bounds are considered as outliers and must be properly investigated.
Results of Figure 4 indicate that the data used for this analysis are devoid of possible outliers thus revealing the
adequacy of the experimental data. In studying the effects of combined current and voltage on the Fe content, 3D
surfaces plots presented in Fig. 5 was generated as follows.
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Fig. 5 Effect of current and voltage on Fe
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Fig. 5 above shows the effect of current and voltage has on Fe. In studying the effects of gas flow rate and current
on the Fe content, 3D surfaces plots presented in Fig. 6 was generated as follows.

raclor Loaing: Acwual

3D Surface

Fe (%)

Design Points:

@ Above Surface
© Below Surface

75 I > 160
X1=A 95
X2=C

Actual Factor
B=215 85

Fe (%)

16.2 —
C: gas flow rate (lit/min) 15.6 A: current (amp)
15 170

Fig. 6 Effect of current and gas flow rate on Fe

In studying the effects of gas flow rate and voltage on the Fe content 3D surface plots presented in Figure 7 was
generated as follows:
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Fig. 7 Effect of voltage and gas flow rate on Fe

The 3D surface plots as observed in Figs. 5-7, shows the relationship between the input variables (current, voltage
and gas flow rate) against the response variable, Fe. It is a 3-dimensional surface plot which was employed to give
a clearer concept of the response surface. Although not as useful as the contour plot for establishing responses
values and coordinates, this view may provide a clearer picture of the surface. As the color of the curved surface
gets darker, the Fe content decreases proportionately. The presence of a colored hole at the middle of the upper
surface gave a clue that more points lightly shaded for easier identification fell below the surface.

3.2 Modelling and Prediction of Fe using Artificial Neural Network (ANN)

In Matlab, APPS is selected, then Neural Net Fitting to begin the analysis process. To begin, we have to import
the data initially loaded into Matlab into the Neural network fitting space. The improved second order method of
gradient also known as Levenberg Marquardt Back Propagation training algorithm is selected as the best learning
rule and was therefore adopted in designing the network architecture. The input layer of the network uses the
hyparbolic targent (tan-sigmoid) transfer function to calculate the layer output from the network input while the
output layer uses the linear (purelin) transfer function. The network generation process divides the input data into
training data sets, validation and testing. For this study, 70% of the data was employed to perform the network
training, 15% for validating the network while the remaining 15% was used to test the performance of the network
at a maximum training cycle of 1000 epochs was used. Trainlm is a network training function that updates weight
and bias values according to Levenberg-Marquardt optimization.
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Trainlm is often the fastest back propagation algorithm in the toolbox, and is highly recommended as a first-choice
supervised algorithm, although it does require more memory than other algorithms. The Artificial Neural Network
architecture is 3-5-1, the network diagram generated for the prediction of Fe using the back propagation neural
network is presented in Fig. 8.

Training Results
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[ Error Histogram | [ Regression |

[ Fit |

Fig. 8 Model summary for predicting Fe

In the network training diagram of Figure 8, it was observed that the network performance was 211. Validation
checks of six (6) was recorded out of six (6). However, this is expected since the issue of weight biased had been
addressed via normalization of the raw data. A performance evaluation plot which shows the progress of training,
validation and testing is presented in Fig. 9.
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Fig. 9 Performance curve of trained network for predicting Fe

In the performance plot of Fig. 9, no evidence of over fitting was observed. In addition, similar trend was observed
in the behaviour of the training, validation and testing curve which is expected since the raw data were normalized
before use. Lower mean square error is a fundamental criterion used to determine the training accuracy of a
network. An error value of 1.1256 at epoch 3 is evidence of a network with strong capacity to predict the Fe. The
training state, which shows the gradient function, the training gain (Mu) and the validation check, is presented in

Fig. 10.
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Fig. 10 Neural network training state for predicting Fe

Back propagation is a method used in artificial neural networks to calculate the error contribution of each neuron
after a batch of data training. Technically, the neural network calculates the gradient of the loss function to explain
the error contributions of each of the selected neurons. Lower error is better. Computed gradient value of 2.5756e-
08 as observed in Figure 10 indicates that the error contributions of each selected neuron is very minimal.
Momentum gain (Mu) is the control parameter for the algorithm used to train the neural network. It is the training
gains and its value must be less than unity. Momentum gains of 1e-08 shows a network with high capacity to
predict the Fe. The regression plot which shows the correlation between the input variables (current, voltage and
gas flow rate) and the target variable Fe coupled with the progress of training, validation and testing is presented
in Fig.11.
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Fig. 11 Regression plot showing the progress of training, validation and testing
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Based on the computed values of the correlation coefficient (R) as observed in Fig. 11, it was concluded that the
network has been accurately trained and can be employed to predict the Fe. Table-5 below shows the ANN
prediction for Fe.

Table-5 ANN Prediction for Fe

S/N Current Voltage Gas flow rate Fe Fe ANN
1 185 21.5 16.5 99 93
2 200 23 18 86 84
3 185 21.5 16.5 99 93
4 170 23 15 87 92
5 200 20 15 90 88
6 159.8 21.5 16.5 91 88
7 210.2 21.5 16.5 80 72
8 185 18.9 16.5 92 93
9 185 24.0 16.5 90 92
10 170 20 18 91 90
11 185 21.5 16.5 96 93
12 170 20 15 95 91
13 185 21.5 16.5 99 93
14 200 20 18 78 82
15 170 23 18 93 93
16 185 21.5 19 91 92
17 185 21.5 16.5 95 93
18 185 21.5 13.9 94 91
19 185 21.5 16.5 98 93
20 200 23 15 88 89
CONCLUSION

A close examination of the molten evaporation rate and droplet temperature required for Fe during
globular to spray was experimented with carefully selecting the welding parameters using these
factors; welding current, welding voltage and gas flow rate to predict and to optimize the evaporation
rates of Fe alloys required for deep penetration using response surface method. The parameters having
the most significant effect on Fe content and transfer modes are welding current, welding voltage and
gas flow rate; to achieve a better weld with deep penetration and less spatter considering the transfer
mode (spray), the current which controls the heat input should be controlled to range of about
185.175Amp, voltage of 20Volts and gas flow rate of 15.959 to give Fe of 96.484. The study shows that
employing computational techniques such as the RSM and ANN for optimizing and predicting
evaporation rates of Fe alloys considering droplet temperature in welding is a significant approach for
enhancing weld quality and advancing manufacturing processes. The following conclusions can be
deduced from this study:
(i). The findings of this study indicate that RSM is a highly efficient and reliable approach for
prediction and optimisation of the output parameter (Fe) of TIG mild steel weld. The ability of
RSM to offer a more exact interpretation of the experimental results seemed to be reasonable
once the predicted R? and adjusted-R? had a good correlation, which was used to support the
equation in the second-order polynomial model. This allows engineers to select optimum
operating conditions to achieve accurate productivity and quality goals.
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(ii). Effective modelling and control of evaporation rates directly such as porosity and inclusions.
By accurately predicting how droplet temperature impacts evaporation, the study provides a
pathway to minimize such problems in welding and, consequently, to create a weld with better
mechanical and structural properties.

(iii).The integration of RSM and ANNSs into welding analysis proves that there are significant
possibilities of the same (for industrial applications). This optimisation method provides fast,
data-driven process approach, offering a computationally efficient alternative to resource-
intensive experimental and purely numerical techniques. Machine learning models,
particularly ANN, delivered high predictive reliability with lower mean absolute errors,
supporting robust process control with considerably reducing the number of unnecessary trial-
and-error experiments.

The findings contribute to the knowledge required for the development of decentralized and intelligent
welding systems by illustrating how more sophisticated computational techniques can be employed to
re-conceptualize the evaluation and optimization of key welding parameters. This paves the way for
robust, high-quality, and defect-minimized fabrication in industrial settings. Further studies should
look into areas such as investigating the application of hybrid machine learning approaches and real-
time monitoring in large-scale industrial welding environments, as well as using different alloy systems
to validate and expand the predictive models.
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