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INTRODUCTION 

  

Petroleum refining is a critical industrial process that transforms crude oil into marketable fuels and other 

petroleum products (Byrum et al., 2021). The petroleum industry is one of the most rapidly developing industries 

and is projected to grow faster in the coming years (Lee et al., 2021). The growing complexity of refining units, 

coupled with environmental constraints and market demands, has necessitated the integration of advanced process 

control, optimization, and data analytics techniques (Olaizola et al., 2022). Among the fossil fuels, petroleum is 

more valuable to several businesses due to the production of extensive assortments of finished products (Adebiyi, 
2022). Chemical separations involve often complex mixtures of molecules into individual components or mixtures 

of components with similar properties. Such separations are integral to a variety of technologies, such as the 

production of liquid fuels and chemicals for transportation as well as everything from plastic bags to sterile 

medical equipment (Brennecke & Freeman, 2020). In modern refining, the refining processes are classified as 

either physical separation or chemical conversion (Fahim et al., 2009). Modern petroleum refining incorporates 

a wide variety of techniques for the physical separation and chemical conversion of crude petroleum components 

(Iulianelli & Drioli, 2020; Aljamali & Salih, 2021). Petroleum refining encompasses various unit operations 

that separate, convert, and treat crude oil into valuable end-products such as gasoline, diesel, jet fuel, kerosene, 

and lubricants (Robinson, 2024; Speight, 2024).  

164 

Nigerian Journal of Engineering Science Research (NIJESR). 
Copyright@ Department of Mechanical Engineering, Gen. 

Abdusalami Abubakar College of Engineering, Igbinedion University, 
Okada, Edo State, Nigeria. 

ISSN: 2636-7114 
Journal Homepage: https://nijesr.iuokada.edu.ng/ 

 

Abstract:  The ongoing digital transformation within the petroleum industry has accelerated the integration of data-

driven methodologies for predictive analytics and process optimization. Despite these advances, conventional 

modelling techniques often struggle to capture the complex, nonlinear interdependencies that characterize refinery 

operations. This study proposes a statistical modelling framework for forecasting gasoline yield within the fluid 

catalytic cracking (FCC) unit of a commercial refinery, leveraging historical operational data spanning seven years. 

Key process variables including feed charge, regeneration temperature, riser temperature, gasoline temperature, and 

gasoline density were utilized to develop a multiple linear regression model. The resulting equation, demonstrates the 

quantitative relationship between gasoline yield (Y) and the selected predictors (X₁ to X₅). Model performance was 

evaluated using the coefficient of determination (R² = 0.096) and Pearson’s correlation coefficient (R = 0.290), 

indicating a modest explanatory power and weak linear association. While the model’s predictive strength is limited, 

it provides a transparent and interpretable baseline for assessing FCC performance and lays the groundwork for future 

integration of more advanced, nonlinear machine learning techniques. The findings affirm the relevance of statistical 

modelling as a practical tool in refinery environments where data quality and volume may constrain the application of 

complex algorithms. 
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Core refining processes include atmospheric and vacuum distillation, catalytic cracking, hydrocracking, 

alkylation, reforming, and desulfurization (Nwaobi, 2021).  Among these, Fluid Catalytic Cracking (FCC) plays a 

pivotal role in maximizing gasoline yield from heavy fractions of crude oil (Zhang et al., 2021). According to 

(Khaldi et al., 2023), FCC units rely on zeolite-based catalysts to break down large hydrocarbon molecules into 

lighter compounds under controlled temperature and pressure. The efficiency of this process hinges on multiple 

interrelated parameters such as riser temperature, pressure, catalyst circulation rate, and feed composition. 

Traditional methods of optimizing FCC operations often involve steady-state models and empirical adjustments 

based on operator experience (Selalame et al., 2022; Zhu et al., 2022). Refinery systems are inherently nonlinear, 

high-dimensional, and subject to dynamic disturbances (Rojas et al., 2025). These characteristics make accurate 

modeling and real-time optimization complex. One of the most persistent challenges lies in managing the 

variability of crude oil feedstock [17]. Crude oil differs significantly in composition, sulfur content, and boiling 

point range, which affects the behavior of every downstream process. Refining strategies that work well for light, 

sweet crude (less than 0.5% weight sulfur content) may be ineffective or even problematic when processing 

heavier or sour crudes. This variability necessitates dynamic process adjustments and increases the complexity of 

refining operations, particularly in units such as the fluid catalytic cracking unit (FCCU), hydrocrackers, and 

atmospheric distillation towers (UJKA, 2021). Equipment reliability is another major concern. Refineries rely on 

an extensive network of pumps, compressors, reactors, heat exchangers, and columns that are prone to mechanical 

wear, corrosion, and fouling. Unexpected equipment failure can lead to operational downtime, safety hazards, and 

substantial financial losses (Douglas et al., 2022; Pal et al., 2023). While predictive maintenance and sensor-

based monitoring have improved in recent years, integrating these systems across legacy infrastructure remains a 

challenge. Furthermore, refinery operations are characterized by multivariable, nonlinear process dynamics. 

Temperature, pressure, flow rates, and chemical composition must be continuously controlled within narrow 

operational windows (Ali et al., 2021). These variables are often interdependent and respond unpredictably to 

fluctuations, making conventional control strategies such as PID loops insufficient in many cases. Achieving 

stability and optimal performance requires more advanced control systems and data-driven models that can adapt 

in real time. 

 

Environmental regulations have also become increasingly stringent, placing additional pressure on refining 

operations (Dimitriadis et al., 2021). Compliance with emission standards for sulfur, nitrogen oxides, and 

particulate matter requires costly process modifications and the integration of specialized units for flue gas 

treatment and wastewater management. These regulations not only increase operational expenses but also reduce 

flexibility in processing certain types of crude oil. Energy consumption is another critical issue in refining, given 

that it is one of the most energy-intensive industries globally (Tavella et al., 2025). Efficient heat integration and 

energy recovery across different process units are essential for minimizing fuel costs and reducing the carbon 

footprint. However, fouling in heat exchangers, variability in operating conditions, and constraints in retrofitting 

older plants can undermine these efforts. Catalyst management further complicates refinery operations. Catalysts 

used in cracking, reforming, and hydro processing gradually lose activity due to coke formation, poisoning, or 

thermal stress (Jing et al., 2020; Oyejide et al., 2025). Ensuring effective regeneration without degrading 

performance is crucial, as catalyst activity directly influences conversion rates and product quality. Suboptimal 

catalyst behavior can lead to reduced yields and increased off-spec production. The explosion of process data 

from Distributed Control Systems (DCS), Programmable Logic Controllers (PLCs), and sensors offers 

opportunities for smarter decision-making, but it also presents challenges. Many refineries struggle with data 

integration, inconsistency in formats, and lack of standardized analytics platforms. As a result, much of the 

collected data remains underutilized, and decision-making still relies heavily on operator experience and historical 

trends rather than real-time analytics. Maintaining consistent product quality while optimizing yield is another 

delicate balancing act. Small variations in operating parameters can significantly affect product properties, 

requiring careful monitoring and adjustment. Yield optimization often depends on predictive models capable of 

handling complex interactions between variables. However, these models must be continually validated and 

recalibrated, which is time-consuming and computationally demanding. Statistical methods have long been 

employed in process industries to analyze variability, monitor quality, and improve performance (Md Nor et al., 
2020; Montgomery, 2020; Oyejide et al., 2024). In petroleum refining, techniques such as regression analysis, 

design of experiments (DoE), statistical process control (SPC), and multivariate analysis are applied for 

understanding process behavior (Evangelista et al., 2020). Regression models are used to quantify relationships 

between input and output variables, while multivariate statistical techniques like Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) help in reducing data dimensionality and uncovering hidden patterns in 

large datasets. Qamar et al. (2024) emphasized the importance of detecting multicollinearity using the Variance 

Inflation Factor (VIF) to ensure model reliability and interpretability. 
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MATERIALS AND METHODS  
 

 

This constitutes the plan guiding the process of data collection. It will highlight the methods and tools deployed 

in the pursuit of setting goals and objectives. Specifically, this chapter will show the research design, sources of 

data and data analysis techniques, validity, and reliability of research. Research design is the framework that 

specifies the type of information to be collected, the sources of data, and the collection procedure. It is the basic 

plan for data collection and analysis of the study. The primary objective involved obtaining data from the catalytic 

cracking of the refinery and carrying out analysis by way of developing a model for predicting future occurrences. 

This is applied research crafted to use past time series data. Fig. 1 is a chart showing the methodology structure. 

 

 
Fig. 1 Chart showing the statistical modeling framework for gasoline yield prediction in FCC unit using 

Multiple Linear Regression Model. 

 

A. DATA COLLECTION 

The data employed is obtained from the Warri Refining and Petrochemical Company, WRPC. Data for this study 

were collected from the refinery records, and they were sourced through personal contact with relevant authorities 

of the organization. The data were journalized in a notebook, but it is important to note that some entries were 

either missing or had no consistency in record maintenance, although the ones collected fell within 2013 and 2019. 

In data collection, emphasis was placed on the catalytic cracking section of the refinery. A 7-year secondary 

dataset was obtained from the archive of a commercial refinery.   The observations were extracted as recorded. 

 

B. METHOD OF DATA ANALYSIS 

The responses on feed charge, regeneration temperature, etc., were used. The predictive model was developed 

based on these parameters. The multiple linear regression was used to develop a regression model to forecast the 

future occurrence of the variables relating to the catalytic cracking of the refinery.  

 

Multiple Regression Model 

The relationship between a set of independent variables and the response y is determined by a mathematical 

model called regression model. When there are more than two independent variables the regression model is 

called a multiple regression model. 

 

The model is of the form  

0 1 1 ........... n ny b b x b x= + + +
 

0 1 1 2 2...........( )y b b x b x i= + +
   

(2 variable problem) 

 

To solve equation (i), we need to develop a set of normal equation by multiplying the model by independent 

variable and SUM. 

𝛴𝑦 = 𝛴𝑏0 + 𝑏1𝛴𝑥1 + 𝑏2𝛴𝑥2                                                                                                                                          (1) 

𝛴𝑥1𝑦 = 𝑏0𝛴𝑥1 + 𝑏1𝛴𝑥2
1 + 𝑏2𝛴𝑥1𝑥2                            (2) 
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𝛴𝑥2𝑦 = 𝑏0𝛴𝑥2 + 𝑏1𝛴𝑥1𝑥2 + 𝑏2𝛴𝑥2
2                            (3) 

Equations 1 to 3 are referred to as normal equation; and least square method was used to obtain the equation. 

Considering, 

y = β0 + β1x1+ β2 x2 + β3 x3+ β4x4+ β5x5 + β6x6+ β7 x7+ β8 x8 + β9 x9 + ε                (4) 

The method of the least squares was utilized to develop a set of normal equations as shown in Equation 4. Y is 

the dependent variable while x1 to x9 refers to the independent variables.  

The key research instrument is the multivariate regression model in which the dependent variable (output) Y is 

the Gasoline Yield. The independent variables are the Feed charge, Regeneration temperature, Riser temperature, 

Gasoline Temp, and Gasoline density.These are represented by Xi, i = 1, 2..., n. 

The pristine equation was stated, and the set of normal equations was developed as shown in Equation 5;  

55443322110 xxxxxy  +++++=
          (5) 

Coefficient of Determination 

The coefficient of Determination is used to validate the developed model. 
2r Coefficient of determination is the measure r, 

2

2

2 2 2 2( ) ( )

n xy x y
r

n x x n y y

 
 −  =

     −   −                    (6) 
2r (as obtained with Equation 6) is used when we want to know the degree to which the observed value variability 

is accounted for. The coefficient of Determination measures the extent to which the independent variable x can 

account for the perceived variability in the value of the dependent variable y. 

 

                                        

RESULTS AND DISCUSSION 

 
The current section shows the results of the data analysis, and their corresponding discussion.  

 

Table-1 Presentation of the variables for the regression model 

 

Feed 
Charge 

Regeneration 
Temp 

Riser 
Temp 

Gasl 
Temp 

Gasl 
Density 

Reactor 
Pressure 

Catalyst/
Oil Ratio 

Coke 
Yield 

Steam 
Flow 

Gasl 
Yield 

KL/hr °C °C °C Kg/cm2 bar  wt% Kg/hr m3/hr 

X1 X2 X3 X4 X5 X6 X7 X8 X9 Y 

7040.3 40890.5 30170.5 2307.8 44.976 18.25 7.32 12.44 25.80 3285.74 

119.3271 693.059 511.3644 39.11525 0.762 1.10 0.42 0.88 1.93 55.69 

 

 
Considering Equation (5), 
y = β0 + β1x1+ β2x2 + β3x3+ β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9     
  
The method of the least squares was utilized to develop a set of normal equations. Y is the dependent 
variable, while x1 to x9 refer to the independent variables.  
The variables of equations (7) to (16) can now be obtained by converting the equations into their matrix 
form.  
17943 = 11β0 + 425 β1 + 2777 β2+1177 β3+1300 β4 +1178 β5+1833 β6+2419 β7+2343 β8+449 β9              (7)
                                                     
678956 = 425 β0+17567 β1+ 95678 β2 + 38422 β3 + 44140 β4+ 36631 β5+ 63407 β6+83343 β7  +79474 β8 

+150861 β9                 (8)       

4479827 = 2777 β0 + 95678 β1 +720103 β2+256849 β3 +293682 β4 +246516 β5 +408368 β6+545918β7+ 529612 
β8+1020536 β9                  (9) 
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1973011 = 1177 β0 +38422 β1+256849 β2+135621 β3+134546 β4+117795 β5 +175822 β6+ 242244 β7 

+ 243152β8+493227 β9                (10)      
2156433 = 1300 β0+ 44140 β1 +293682 β2+ 134546 β3 +159060 β4+129288 β5+194122 β6+269515 β7 +266862 
β8 +543954 β9               (11) 
       
1959927 = 1178 β0 + 36631 β1 +246516 β2 + 117795 β3+129288β4 +135828 β5+169103 β6 +229443 β7 + 
229729 β8 +471701 β9              (12)     
2985980 = 1833 β0 +12720 β1+ 408368 β2 +175822 β3+194122 β4 + 169103 β5 + 328469 β6 + 361866 β7 + 
354470 β8 + 677153 β9              (13)       
3971779 = 2419 β0 + 83343 β1 +545918 β2 + 242244 β3 +269515 β4+229443 β5 + 361866 β6+ 537213 β7 

+ 486608 β8 + 959240 β9               (14) 
    
3892693 = 2343 β0 +79474 β1 + 529612 β2 +243152 β3+ 266862 β4+229729 β5 +354470 β6 + 486608 β7 

+ 515581 β8 + 961280 β9              (15)   
7554071 = 4491 β0 +150861 β1 + 1020536 β2 +493227 β3 +543954 β4 + 471701 β5 + 677153 β6 + 959240 β7 + 
961280 β8 +   2033679 β9              (16) 
 
Solving the set of normal equations, we have: 
β0 = 1548.4839 
β1 = -1.5224 
β2 = -0.2039 
β3 = 1.1179 
β4 = 0.0380 
β5 = 0.3411 
β6 = -1.2637 
β7 = -0.0433 
β8 = 0.5581 
β9 = 0.3272 

 

⸫ y = 1548.4839 - 1.5224X1 – 0.2039X2 + 1.1179X3+ 0.0380X4+ 0.3411X5 – 1.2637X6 – 0.0433X7 + 0.5581X8 
+ 0.3272X9    
 

 CONCLUSION 
 

The modeling of catalytic cracking has been successfully carried out. The result showed that the 
multiple linear regression model provided average reliability and accuracy, having a correlation 
coefficient R of 0.95084 and the coefficient of determination R2 as 0.723079. 

(i) Multiple linear regression was found to be reliable for predicting the gasoline yield 
(ii) A model to predict gasoline yield from refining parameters has been developed. 

 
The multivariate linear regression model is found suitable and applied to the problem examined in this 
study. The study has provided reasonable information to the existing literature on the application of a 
regression model for a refinery operation. The significance of the research lies in its potential to enhance 
refinery operations through improved prediction models, providing decision-making support, 
optimizing resource use, and reducing costs. It offers value to industry stakeholders, policymakers, 
environmental initiatives, and the academic community. The proposed framework bridges data-driven 
approaches with domain expertise, contributing to scalable and validated modelling strategies.  
 
 

RECOMMENDATIONS 
 

Considering the outcome of the results obtained from the study regarding Agbor and its environs, the 
following practices/activities are recommended. 
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i. Long-Term Monitoring of vegetative patterns/trends and adaptive management of 
vegetative cover to reduce erosivity of rainfall and enhance runoff interception thereby 
reducing the generation of sediments and sediment flow, and 

ii. Provision of easy access to climatic/climatological data to enable future studies on the 
existing trends of erosion in the long run with regards to rainfall specifically 
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