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evaluated using the coefficient of determination (R?> = 0.096) and Pearson’s correlation coefficient (R = 0.290),
indicating a modest explanatory power and weak linear association. While the model’s predictive strength is limited,
it provides a transparent and interpretable baseline for assessing FCC performance and lays the groundwork for future
integration of more advanced, nonlinear machine learning techniques. The findings affirm the relevance of statistical
modelling as a practical tool in refinery environments where data quality and volume may constrain the application of
complex algorithms.
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INTRODUCTION

Petroleum refining is a critical industrial process that transforms crude oil into marketable fuels and other
petroleum products (Byrum et al., 2021). The petroleum industry is one of the most rapidly developing industries
and is projected to grow faster in the coming years (Lee ef al., 2021). The growing complexity of refining units,
coupled with environmental constraints and market demands, has necessitated the integration of advanced process
control, optimization, and data analytics techniques (Olaizola et al., 2022). Among the fossil fuels, petroleum is
more valuable to several businesses due to the production of extensive assortments of finished products (Adebiyi,
2022). Chemical separations involve often complex mixtures of molecules into individual components or mixtures
of components with similar properties. Such separations are integral to a variety of technologies, such as the
production of liquid fuels and chemicals for transportation as well as everything from plastic bags to sterile
medical equipment (Brennecke & Freeman, 2020). In modern refining, the refining processes are classified as
either physical separation or chemical conversion (Fahim et al., 2009). Modern petroleum refining incorporates
a wide variety of techniques for the physical separation and chemical conversion of crude petroleum components
(Iulianelli & Drioli, 2020; Aljamali & Salih, 2021). Petroleum refining encompasses various unit operations
that separate, convert, and treat crude oil into valuable end-products such as gasoline, diesel, jet fuel, kerosene,
and lubricants (Robinson, 2024; Speight, 2024).
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Core refining processes include atmospheric and vacuum distillation, catalytic cracking, hydrocracking,
alkylation, reforming, and desulfurization (Nwaobi, 2021). Among these, Fluid Catalytic Cracking (FCC) plays a
pivotal role in maximizing gasoline yield from heavy fractions of crude oil (Zhang et al., 2021). According to
(Khaldi et al., 2023), FCC units rely on zeolite-based catalysts to break down large hydrocarbon molecules into
lighter compounds under controlled temperature and pressure. The efficiency of this process hinges on multiple
interrelated parameters such as riser temperature, pressure, catalyst circulation rate, and feed composition.
Traditional methods of optimizing FCC operations often involve steady-state models and empirical adjustments
based on operator experience (Selalame et al., 2022; Zhu et al., 2022). Refinery systems are inherently nonlinear,
high-dimensional, and subject to dynamic disturbances (Rojas et al., 2025). These characteristics make accurate
modeling and real-time optimization complex. One of the most persistent challenges lies in managing the
variability of crude oil feedstock [17]. Crude oil differs significantly in composition, sulfur content, and boiling
point range, which affects the behavior of every downstream process. Refining strategies that work well for light,
sweet crude (less than 0.5% weight sulfur content) may be ineffective or even problematic when processing
heavier or sour crudes. This variability necessitates dynamic process adjustments and increases the complexity of
refining operations, particularly in units such as the fluid catalytic cracking unit (FCCU), hydrocrackers, and
atmospheric distillation towers (UJKA, 2021). Equipment reliability is another major concern. Refineries rely on
an extensive network of pumps, compressors, reactors, heat exchangers, and columns that are prone to mechanical
wear, corrosion, and fouling. Unexpected equipment failure can lead to operational downtime, safety hazards, and
substantial financial losses (Douglas et al., 2022; Pal et al., 2023). While predictive maintenance and sensor-
based monitoring have improved in recent years, integrating these systems across legacy infrastructure remains a
challenge. Furthermore, refinery operations are characterized by multivariable, nonlinear process dynamics.
Temperature, pressure, flow rates, and chemical composition must be continuously controlled within narrow
operational windows (Ali ef al., 2021). These variables are often interdependent and respond unpredictably to
fluctuations, making conventional control strategies such as PID loops insufficient in many cases. Achieving
stability and optimal performance requires more advanced control systems and data-driven models that can adapt
in real time.

Environmental regulations have also become increasingly stringent, placing additional pressure on refining
operations (Dimitriadis et al., 2021). Compliance with emission standards for sulfur, nitrogen oxides, and
particulate matter requires costly process modifications and the integration of specialized units for flue gas
treatment and wastewater management. These regulations not only increase operational expenses but also reduce
flexibility in processing certain types of crude oil. Energy consumption is another critical issue in refining, given
that it is one of the most energy-intensive industries globally (Tavella ef al., 2025). Efficient heat integration and
energy recovery across different process units are essential for minimizing fuel costs and reducing the carbon
footprint. However, fouling in heat exchangers, variability in operating conditions, and constraints in retrofitting
older plants can undermine these efforts. Catalyst management further complicates refinery operations. Catalysts
used in cracking, reforming, and hydro processing gradually lose activity due to coke formation, poisoning, or
thermal stress (Jing et al., 2020; Oyejide et al., 2025). Ensuring effective regeneration without degrading
performance is crucial, as catalyst activity directly influences conversion rates and product quality. Suboptimal
catalyst behavior can lead to reduced yields and increased off-spec production. The explosion of process data
from Distributed Control Systems (DCS), Programmable Logic Controllers (PLCs), and sensors offers
opportunities for smarter decision-making, but it also presents challenges. Many refineries struggle with data
integration, inconsistency in formats, and lack of standardized analytics platforms. As a result, much of the
collected data remains underutilized, and decision-making still relies heavily on operator experience and historical
trends rather than real-time analytics. Maintaining consistent product quality while optimizing yield is another
delicate balancing act. Small variations in operating parameters can significantly affect product properties,
requiring careful monitoring and adjustment. Yield optimization often depends on predictive models capable of
handling complex interactions between variables. However, these models must be continually validated and
recalibrated, which is time-consuming and computationally demanding. Statistical methods have long been
employed in process industries to analyze variability, monitor quality, and improve performance (Md Nor et al.,
2020; Montgomery, 2020; Oyejide et al., 2024). In petroleum refining, techniques such as regression analysis,
design of experiments (DoE), statistical process control (SPC), and multivariate analysis are applied for
understanding process behavior (Evangelista et al., 2020). Regression models are used to quantify relationships
between input and output variables, while multivariate statistical techniques like Principal Component Analysis
(PCA) and Partial Least Squares (PLS) help in reducing data dimensionality and uncovering hidden patterns in
large datasets. Qamar et al. (2024) emphasized the importance of detecting multicollinearity using the Variance
Inflation Factor (VIF) to ensure model reliability and interpretability.
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MATERIALS AND METHODS

This constitutes the plan guiding the process of data collection. It will highlight the methods and tools deployed
in the pursuit of setting goals and objectives. Specifically, this chapter will show the research design, sources of
data and data analysis techniques, validity, and reliability of research. Research design is the framework that
specifies the type of information to be collected, the sources of data, and the collection procedure. It is the basic
plan for data collection and analysis of the study. The primary objective involved obtaining data from the catalytic
cracking of the refinery and carrying out analysis by way of developing a model for predicting future occurrences.
This is applied research crafted to use past time series data. Fig. 1 is a chart showing the methodology structure.

Model
Development

Multiple linear
regression model

Model
Performance Data
Evaluation Collection
Coefficient of Historical
Determination (R?) operational refinery
and Pearson’s data (7 years data)
correlation
coefficient (R)
Inaccurate Enhanced Yield
Gasoline Yield Prediction

Limited predictive

: Transparent, interpretable
modelling strength

baseline for assessing FCC
performance

Fig. 1 Chart showing the statistical modeling framework for gasoline yield prediction in FCC unit using
Multiple Linear Regression Model.

A. DATA COLLECTION

The data employed is obtained from the Warri Refining and Petrochemical Company, WRPC. Data for this study
were collected from the refinery records, and they were sourced through personal contact with relevant authorities
of the organization. The data were journalized in a notebook, but it is important to note that some entries were
either missing or had no consistency in record maintenance, although the ones collected fell within 2013 and 2019.
In data collection, emphasis was placed on the catalytic cracking section of the refinery. A 7-year secondary
dataset was obtained from the archive of a commercial refinery. The observations were extracted as recorded.

B. METHOD OF DATA ANALYSIS

The responses on feed charge, regeneration temperature, etc., were used. The predictive model was developed
based on these parameters. The multiple linear regression was used to develop a regression model to forecast the
future occurrence of the variables relating to the catalytic cracking of the refinery.

Multiple Regression Model

The relationship between a set of independent variables and the response y is determined by a mathematical
model called regression model. When there are more than two independent variables the regression model is
called a multiple regression model.

The model is of the form

y=by+bx +....... +b.x,
y=by+bx, +byx,.......... @)
(2 variable problem)

To solve equation (i), we need to develop a set of normal equation by multiplying the model by independent
variable and SUM.
2y = Xby + by Xx; + b, Xx, @9
Zx1y = bgZx; + b Zx?%, + b Zx;x, )
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Zx,y = boZx, + by Zx1x, + by Xx,? 3)

Equations 1 to 3 are referred to as normal equation; and least square method was used to obtain the equation.
Considering,

y = Bo + Bixit P2 X2+ B3 X3+ Paxat Psxs + Pexet Pr X7+ Ps Xs + PoXo + € 4)
The method of the least squares was utilized to develop a set of normal equations as shown in Equation 4. Y is
the dependent variable while x; to x¢ refers to the independent variables.

The key research instrument is the multivariate regression model in which the dependent variable (output) Y is
the Gasoline Yield. The independent variables are the Feed charge, Regeneration temperature, Riser temperature,
Gasoline Temp, and Gasoline density.These are represented by X;, i =1, 2..., n.

The pristine equation was stated, and the set of normal equations was developed as shown in Equation 5;

Y =Py + Bix, + Boxy + x5 + Buxy + Pix; (5)

Coefficient of Determination
The coefficient of Determination is used to validate the developed model.

2 . C
V" Coefficient of determination is the measure r,
2

) nxxy — Xx2y
\/[anz (20 |[n2y* ~ ()]

(6)

2
7" (as obtained with Equation 6) is used when we want to know the degree to which the observed value variability
is accounted for. The coefficient of Determination measures the extent to which the independent variable x can
account for the perceived variability in the value of the dependent variable y.

RESULTS AND DISCUSSION

The current section shows the results of the data analysis, and their corresponding discussion.

Table-1 Presentation of the variables for the regression model

Feed Regeneration  Riser Gasl Gasl Reactor Catalyst/ Coke Steam Gasl
Charge Temp Temp Temp Density Pressure  Oil Ratio  Yield Flow Yield
KL/hr °C °C °C Kg/cm? bar wt% Kg/hr m3/hr
X1 X2 X3 X4 X5 X6 X7 X8 X9 Y
7040.3 40890.5 30170.5 2307.8 44.976 18.25 7.32 12.44 25.80 3285.74
119.3271 693.059 5113644  39.11525 0.762 1.10 0.42 0.88 1.93 55.69

Considering Equation (5),
y = Po + Pixat Poxz + Paxat Paxs+ Psxs + Pexe + Prxz + Psxs + Poxo

The method of the least squares was utilized to develop a set of normal equations. Y is the dependent
variable, while x; to xerefer to the independent variables.

The variables of equations (7) to (16) can now be obtained by converting the equations into their matrix
form.

17943 = 11Po + 425 B1 + 2777 P2+1177 B3+1300 Pa +1178 Ps+1833 Pe+2419 B7+2343 Ps+449 Bo (7)

678956 = 425 By+17567 Pi+ 95678 Ba + 38422 By + 44140 Put 36631 Bs+ 63407 Pe+83343 Br +79474 Bs
+150861 o ®)
4479827 = 2777 Bo+ 95678 B1 +720103 B,+256849 B3 +293682 By +246516 Ps +408368 Be+545918p7+ 529612
Bs+1020536 Bo 9)
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1973011 = 1177 Bo +38422 B1+256849 B,+135621 Bs+134546 Pu+117795 Bs +175822 Pet+ 242244 Py
+ 243152P5+493227 Bo (10)
2156433 = 1300 Bo+ 44140 Br +293682 Bo+ 134546 B3 +159060 Bs+129288 Bs+194122 B+269515 B +266862
Bs +543954 Po (11)

1959927 = 1178 Bo + 36631 P1 +246516 P, + 117795 B5+129288B, +135828 Bs+169103 Bs +229443 B7 +

229729 B +471701 o (12)
2985980 = 1833 B +12720 1+ 408368 B> +175822 Bs+194122 B4 + 169103 Ps + 328469 B + 361866 P +
354470 Bs + 677153 Po (13)

3971779 = 2419 Bo + 83343 P +545918 P, + 242244 B3 +269515 B4+229443 Bs + 361866 P+ 537213 Py
+486608 s + 959240 fo (14)

3892693 = 2343 B +79474 P1 + 529612 By +243152 Pa+ 266862 B4+229729 Ps +354470 P + 486608 B7

+ 515581 Ps + 961280 Po (15)

7554071 = 4491 Po +150861 B1 + 1020536 B, +493227 P +543954 By + 471701 Bs + 677153 P + 959240 7 +
961280 Ps + 2033679 Po (16)

Solving the set of normal equations, we have:
Bo = 1548.4839
B1 =-1.5224
B2 =-0.2039
Bs=1.1179

B2 =10.0380
Bs=0.3411

Bs =-1.2637
B7 =-0.0433
Bs = 0.5581

Bo = 0.3272

sy =1548.4839 - 1.5224 X1 - 0.2039X> + 1.1179X5+ 0.0380X 4+ 0.3411X5 - 1.2637 X6 — 0.0433X7 + 0.5581 X5
+0.3272X9

CONCLUSION

The modeling of catalytic cracking has been successfully carried out. The result showed that the
multiple linear regression model provided average reliability and accuracy, having a correlation
coefficient R of 0.95084 and the coefficient of determination R? as 0.723079.

() Multiple linear regression was found to be reliable for predicting the gasoline yield

(if) A model to predict gasoline yield from refining parameters has been developed.

The multivariate linear regression model is found suitable and applied to the problem examined in this
study. The study has provided reasonable information to the existing literature on the application of a
regression model for a refinery operation. The significance of the research lies in its potential to enhance
refinery operations through improved prediction models, providing decision-making support,
optimizing resource use, and reducing costs. It offers value to industry stakeholders, policymakers,
environmental initiatives, and the academic community. The proposed framework bridges data-driven
approaches with domain expertise, contributing to scalable and validated modelling strategies.

RECOMMENDATIONS

Considering the outcome of the results obtained from the study regarding Agbor and its environs, the
following practices/activities are recommended.
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i. Long-Term Monitoring of vegetative patterns/trends and adaptive management of
vegetative cover to reduce erosivity of rainfall and enhance runoff interception thereby
reducing the generation of sediments and sediment flow, and

ii. Provision of easy access to climatic/climatological data to enable future studies on the
existing trends of erosion in the long run with regards to rainfall specifically
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