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Abstract: This study investigates the use of loT-based systems for real-time fault detection in Engine
Control Units (ECUs) of motor vehicles, aiming to enhance vehicle safety, reliability, and efficiency.
ECUs, which manage critical functions like fuel injection, ignition, and emissions control, are
vulnerable to faults that can lead to performance issues and safety risks. Traditional diagnostic methods
often detect faults only after they occur, resulting in costly repairs and breakdowns. The adoption of
IoT technology enables proactive fault detection by continuously monitoring parameters such as
temperature, oil pressure and RPM, identifying early signs of emerging faults. The methodology
integrates statistical analyses, including time-series analysis to track trends in sensor data, and
regression modeling to establish relationships between sensor data and fault indicators. Machine
learning techniques such as Support Vector Machines (SVM) and Decision Trees (DTs) enhance fault
classification, while Principal Component Analysis (PCA) simplifies complex sensor data for more
accurate predictions. Results demonstrate that loT systems effectively detect faults early, facilitating
timely maintenance and reducing the risk of engine issues. These systems improve vehicle safety, fuel
efficiency, and emissions control, while extending vehicle lifespan. The research recommends the
integration of IoT technology in ECUs to enhance the safety and sustainability of transportation
systems, with potential benefits for automotive engineers, policymakers, and vehicle owners.

Keywords: Development, loT-based Systems, Real-Time Fault Detection, Engine Control Units and
Motor Vehicles

INTRODUCTION

Nigeria's The advent of the Internet of Things (IoT) has catalyzed transformative changes across numerous sectors,
with the automotive industry among the most significantly impacted. IoT technologies enable seamless
interconnection between physical devices and digital systems, supporting real-time data collection, transmission,
and analysis. This interconnectivity offers substantial benefits for vehicle monitoring systems, particularly in
managing the Engine Control Unit (ECU) a central component responsible for optimizing engine performance.
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Implementing IoT-based systems for real-time fault detection in ECUs is therefore crucial for enhancing vehicle
reliability, safety, and efficiency, while also reducing maintenance costs and unplanned downtime (Zhang et al.,
2019; Ghosh et al., 2021). ECUs play a vital role in modern vehicles by acting as the brain of engine management
systems. They regulate a wide range of functions, including fuel injection, ignition timing, and emission control
for internal combustion engines, electric motors, and hybrid powertrains (Onwusa et al., 2025). However, their
operational complexity renders them susceptible to various faults, which can significantly affect vehicle
performance and safety. Conventional diagnostic approaches such as periodic inspections and diagnostic trouble
codes (DTCs) are inherently reactive, often identifying issues only after they have developed into more serious
problems (Onwusa et al., 2025). In contrast, IoT-enabled fault detection systems support continuous monitoring
and proactive diagnosis, enabling the early detection of anomalies and timely intervention (Munjal and Sharma,
2020). Real-time IoT-based fault detection leverages data collected from an array of onboard sensors, processed
through cloud or edge computing platforms (Onwusa et al., 2025). These systems monitor key parameters such as
temperature, vibration, and engine load, and apply machine learning and predictive analytics to detect deviations
from normal behavior. Such predictive maintenance (PdM) capabilities offer actionable insights for drivers and
fleet managers, enabling them to mitigate faults before they escalate into critical failures (Lee et al., 2018).

Despite their advantages, the implementation of robust loT-based fault detection systems faces numerous
challenges. These include managing large volumes of real-time data, ensuring high accuracy in fault detection,
securing data transmission, and integrating new systems with legacy vehicle infrastructure. Moreover, given the
safety-critical nature of ECU operations, any fault detection system must undergo rigorous validation to ensure
reliability and performance (Chahal et al., 2020). Addressing these challenges necessitates an interdisciplinary
approach, combining expertise in embedded systems, automotive engineering, machine learning (ML) and cyber
security. Also, the need for a robust, scalable, and secure loT-based solution capable of enabling proactive fault
detection in ECUs to improve vehicle performance, safety, and operational efficiency. The theoretical foundation
of this study is grounded in key interdisciplinary domains. Cyber-Physical Systems (CPS) theory is particularly
pertinent, as ECUs represent CPS in which embedded computation interacts dynamically with physical processes
to enable real-time control and feedback (Lee, 2008). Fault Detection and Diagnosis (FDD) theory also underpins
this work, offering both model-based and data-driven frameworks for identifying system deviations and isolating
faults (Isermann, 2005). Furthermore, the edge-cloud computing paradigm is employed to meet low-latency
processing demands, enabling immediate decision-making at the vehicle level while leveraging the cloud for long-
term analytics and model updates (Shi et al., 2016). These interdisciplinary domains offer a holistic approach to
managing the complexities of modern vehicle systems, ensuring that CCs and other components perform
optimally while minimizing system failures and emissions. By leveraging the power of embedded systems,
machine learning, and cloud computing, this study provides a comprehensive strategy for improving vehicle
efficiency, reliability, and regulatory compliance in real-time. Modern vehicle architectures have become
increasingly reliant on complex electronic control systems. The ECU is particularly critical, overseeing engine
operations to ensure regulatory compliance and optimal performance (Singh et al., 2021). However, faults may
originate from numerous sources, including sensor degradation, electrical interference, or mechanical wear, and
can lead to elevated emissions, reduced efficiency, and safety risks (Zhang and Lee, 2020). The limitations of DTCs
in capturing these faults in a timely manner often result in delayed diagnosis and increased repair costs (Munjal
et al., 2019). IoT systems offer a path toward more effective ECU fault detection, but their development introduces
further complexities. Real-time processing of high-frequency sensor data demands efficient algorithms and
substantial computational resources. The challenge lies not only in detecting faults accurately, but also in
minimizing false positives and false negatives, which may erode user trust (Kim and Park, 2020). Moreover, as
vehicle systems become more connected, cyber security becomes paramount. Protecting sensitive vehicular data
against malicious access requires robust encryption, secure communication protocols, and vigilant access control
(Chahal et al., 2022).

This study seeks to design and implement an innovative loT-based system capable of real-time ECU fault
detection, with the goal of enhancing vehicle safety, reliability, and operational efficiency. By integrating real-time
analytics, the proposed system predicts faults and enables proactive maintenance scheduling, reducing the
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incidence of unexpected breakdowns. A comprehensive framework is developed for seamless data acquisition
and remote ECU monitoring. Additionally, compatibility with existing diagnostic standards such as OBD-II is
examined to ensure industry relevance and ease of adoption (Onwusa ef al., 2025). Emphasis is placed on
scalability, allowing the solution to be adapted across various vehicle types and evolving ECU technologies. The
system is designed to be both cost-effective and user-friendly, targeting broad adoption from individual vehicle
owners to large-scale fleet operators (Onwusa et al., 2025). Nevertheless, integrating such systems into existing
automotive infrastructures poses both technical and economic barriers. Retrofitting older vehicles may be
impractical due to hardware limitations, while newer vehicles may require additional modifications. The
economic feasibility of IoT adoption depends on factors such as vehicle type, fleet size, and projected return on
investment (Sharma & Aggarwal, 2021). Recent literature supports the potential of IoT in automotive diagnostics.
Zhang et al. (2019) and Ghosh et al. (2021) demonstrated the value of real-time data in improving vehicle reliability.
Lee et al. (2018) showed that machine learning techniques could detect ECU anomalies from acoustic and vibration
signals (Onwusa et al., 2025). Kim and Park (2020) reported deep learning models achieving fault classification
accuracies above 94% when integrated into IoT platforms. Chahal et al. (2022) emphasized the need for strong
cyber security in IoT-based vehicular systems, while Sharma and Aggarwal (2021) evaluated the economic trade-
offs in deploying these technologies. However, despite these advancements, existing research still reveals critical
shortcomings. Most studies focus on specific diagnostic parameters, isolated subsystems, or vehicle-specific
implementations, offering limited support for cross-platform interoperability, scalability to diverse ECU
standards, and real-time deployment in dynamic driving environments. Additionally, there is insufficient
emphasis on integrating cyber security, machine learning, and cost-effective hardware into a unified solution
suitable for both new and legacy vehicles. Therefore, this study addresses these gaps by presenting a secure,
adaptable, and scalable IoT architecture for real-time ECU fault detection. Key objectives include designing an
integrated sensing and communication framework, developing machine learning algorithms trained on real-world
vehicle data, implementing robust encryption protocols for data protection, and evaluating interoperability with
existing diagnostic tools. By tackling these challenges, this research contributes to the advancement of reliable,
secure, and efficient IoT-based fault detection systems in ECUs, fostering greater resilience and sustainability
within the automotive ecosystem.
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Fig.1 Visual abstract summary of the development of IoT- based systems for real-time fault detection in ECUs
in Motor Vehicles

This diagram in figure 1 provides a visual abstract of IoT-based systems for real-time fault detection in Electronic
Control Units (ECUs) of motor vehicles.
i. At the top left, a motor vehicle is shown as the starting point.
ii.  Inside the vehicle, the Electronic Control Unit (ECU collects operational data and monitors performance.
iii. =~ The ECU is connected to an IoT-based system, represented by a cloud and laptop, which enables real-time
communication and diagnostics.
iv.  Through IoT, data from the ECU is analyzed instantly to detect faults.
v.  Themagnifying glass with an exclamation mark represents fault identification, while the upward bar chart
shows improvement in reliability, safety and efficiency.
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MATERIALS AND METHODS
2.1 Materials

In this study, various sensor components were employed to facilitate accurate monitoring and diagnosis of engine
performance and system behavior. These sensors play a critical role in capturing real-time data, ensuring system
reliability, and enabling fault detection. The materials used consist of different types of sensors designed to
measure specific parameters, including temperature, pressure, vibration, and exhaust emissions. Each sensor
contributes uniquely to identifying operational inefficiencies, detecting potential failures, and maintaining
compliance with safety and environmental standards. The major sensor components utilized are outlined below.

MATERIALS

Sensor Components

Temperature Sensors
Monitor heat levels of engine
components to detect
overheating

Pressure Sensors
Measure fuel injection and
exhaust system pressure to
idontify leaks or blockages

Vibration Sensors
Assess engine vibrations to
detect mechanical faults

Oxygen and Emissions
Sensors

Analyze exhaust gases to
ensure compliance with
emissions standards

o § ()6

Fig. 2 Materials- Sensor components Fig. 3 Microcontroller (Arduino and Raspberry Pi)

Processing Unit: Microcontroller (Arduino and Raspberry Pi): Collects sensor data and transmits it to the
edge or cloud. Raspberry Pi is preferred for its compact design and robust processing capabilities (Singh and Lee,
2019).

Edge Computing Device: Preprocesses raw sensor data locally before transmission to the cloud. Reduces
bandwidth and latency, enabling quicker fault response.

Communication Module: Enables data transmission from the vehicle to the cloud. Wi-Fi was used in urban
environments. GSM was deployed in remote areas where Wi-Fi is unreliable (Sharma and Singh, 2021).

Cloud Platform: Utilized for data storage, processing, and advanced analytics. Platforms like Amazon Web
Services Internet of Things AWS IoT and Google Cloud provide scalable computing resources and support the

deployment of machine learning models for real-time fault detection (Aggarwal and Verma, 2021).

2..1.1 Software and Analytical Tools

i.  Programming Language: Python (for data cleaning, transformation and model training)
ii. Libraries: Pandas, NumPy, TensorFlow
iii. =~ Machine Learning Algorithms: Support Vector Machines (SVM), Decision Trees and Convolutional
Neural Networks (CNN). CNNs are selected for their effectiveness in recognizing complex sensor data
patterns.

2.1.2. Data Collection and Preprocessing
i.  Data Collection
Data is collected from the sensors continuously as the vehicle operates. This study uses real-time data as
well as historical datasets, covering multiple types of faults and normal operating conditions. Real-time
data is streamed to the edge computing device for initial analysis, while larger datasets are stored in the
cloud for in-depth machine learning model training (Munjal & Gupta, 2019).
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ii. =~ Data Preprocessing

Data preprocessing involves several key steps to clean, transform, and prepare the data for analysis.
Sensor data often contains noise that can hinder analysis, so techniques like moving average filtering and
Fourier transforms are applied to reduce noise and highlight important patterns. To bring different
parameters, such as temperature and pressure, to a comparable scale, the data is normalized, which
improves model accuracy and reduces computational complexity. Additionally, data augmentation
techniques are employed to enhance the dataset by simulating different fault scenarios, ensuring the
machine learning models are trained effectively.

Sensor Components Processing Unit
= - Temperature Sensors Arduino or
> - Pressure Sensors Raspberry ™ Bi
- Vibration Sensors
L
Edge Computing Device
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Communication Module
—
——— Wi-Fi
ot Data storage and anallytics
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Cloud Platform Data Preprocessing
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Programming Language libraries

Python ITandas EFNuMM Py

TensorFloww
Data Collection Machine Learning Models

Collect sensor data from @ Support Vector Machines
vehicle Decision Trees

Convolutional Neural

Fig. 4 Diagram showing details of the materials, software and tools

2.2. Methods

2.2.1 Research Design

This study employs a mixed-methods research design, integrating both quantitative and qualitative approaches
to ensure a comprehensive evaluation of the proposed loT-based ECU fault detection system.

i.  Quantitative Analysis: Numerical data is collected from ECU sensors and analyzed using machine
learning algorithms to identify fault patterns. This enables objective assessment of ECU performance
under various operating conditions.

ii.  Qualitative Analysis: User feedback is gathered regarding the system’s usability, accuracy, and its
influence on vehicle maintenance practices. These insights guide iterative system refinement to align with
practical requirements and user expectations.

2.2.2. Experimental Approach

An experimental setup was developed to assess the real-time fault detection capability of the system under
controlled and simulated fault conditions. This approach enables systematic validation of the system’s accuracy,
reliability, and responsiveness in near-real scenarios.

2.2.3. Experimental Procedure: The experimental procedure was conducted in the following phases.

2.2.4. Sensor Calibration and Baseline Data Collection
All sensors were calibrated prior to data collection to ensure accurate signal acquisition. Baseline data reflecting
normal ECU operation was recorded and used for:

i.  Comparative analysis during fault simulations

ii.  Initial training of the machine learning models for fault classification (Zhang & Chen, 2020)
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2.2.5. Fault Simulation: A range of ECU faults were systematically simulated to test the system's detection
performance:

i.  Overheating: Induced by raising engine temperatures above safe thresholds
ii. ~ Pressure Leaks: Simulated via controlled exhaust leak scenarios
iii.  Sensor Malfunctions: Created by disconnecting or altering specific sensor outputs (Lee et al., 2021)

During each simulation, real-time sensor data was monitored, and the system attempted immediate fault
identification. Upon detection, alerts were generated and logged for further performance analysis.

2.2.6. Machine Learning Implementation: Data Collection and Model Training

To enable intelligent fault detection, vibration and engine parameter data were collected from both healthy and
simulated faulty engine operating states. The dataset was pre-processed through noise filtering and segmented
into fixed time windows suitable for signal analysis. Relevant features such as statistical descriptors (RMS,
kurtosis, skewness), frequency-domain amplitudes, and time-frequency characteristics were extracted to
represent engine behavior. The processed dataset was then divided into training, validation, and test subsets to
avoid model overfitting and ensure generalization. Multiple machine learning classifiers such as Support Vector
Machines (SVM), Random Forest (RF), and Artificial Neural Networks (ANN) —were independently trained to
learn patterns that distinguish abnormal vibration signatures from normal operation. Model performance was
evaluated using Accuracy, Precision, Recall, and F1-score, ensuring balanced performance for both fault detection
and misclassification reduction. The best-performing model, identified through hyperparameter optimization and
cross-validation, was selected for real-time deployment within the embedded edge-computing framework
(Sharma & Bose, 2020).

2.2.7 Real-World Validation

Following offline testing, the deployed system was evaluated under actual driving conditions to assess its
robustness and diagnostic reliability across different: Engine speeds and throttle positions, Load variations and
transient conditions and External environmental influences such as temperature and road conditions .Key real-
time performance indicators system latency, false-positive rate, and false-negative rate were continually
monitored to validate diagnostic responsiveness and the stability of the fault-detection model during field
operation (Singh & Khanna, 2021).

2.2.8 Data Security and Ethical Considerations
To ensure responsible handling of vehicle-generated data throughout the machine learning lifecycle:

i All communication between the sensing unit and cloud/edge systems was encrypted using SSL
security protocols.

ii. Collected data was anonymized, ensuring that engine or user information was not personally
identifiable

iii. iii. Ethical compliance measures adhered to established data protection and confidentiality guidelines

for vehicular and user privacy during experimentation and system deployment (Chahal et al., 2022).

Experimental Approach — System Testing Framework

1oT Fault
ECU Sensors Detection Data
Modul Logging &
sauie Evaluation

Simulated
Faults

1

[ Simulated |

Faults

Fig. 5 Experimental approach- system testing framework
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2.3. Testing and Optimization: This phase involved the systematic installation, data acquisition, and real-time
performance validation of the proposed IoT-based fault detection system. The steps are outlined below:

2.3.1. System Installation
i.  Vibration Sensor Setup: Piezoelectric vibration sensors were securely mounted on critical locations,
including the generator frame and motor housing, to capture mechanical oscillations.
ii.  Microcontroller Configuration: A NodeMCU ESP8266 microcontroller was interfaced with the vibration
sensors to process and transmit data.
iii. =~ Temperature Monitoring: Temperature sensors (DHT11 or DS18B20) were installed near the generator to
measure ambient thermal conditions

2.3.2. Data Collection
i.  Power Supply: The system was powered using a 4V USB source or a regulated 3.3V power supply.

ii. =~ Sensor Operation: The SW-420 vibration sensor detected mechanical disturbances. When the vibration
intensity surpassed the predefined threshold, the sensor output a digital HIGH signal to the
microcontroller.

2.3.3. Real-Time Monitoring and Validation
i.  Cloud Connectivity: The NodeMCU established a Wi-Fi connection and transmitted sensor data to the

Blynk Cloud platform.

ii.  User Interface: Real-time vibration and temperature data were visualized via the Blynk dashboard,
accessible through both mobile and web interfaces.

iii. = Performance Benchmarking: IoT-based vibration readings were compared against those obtained from
conventional vibration analyzers, such as FFT-based diagnostic tools.

iv.  Accuracy Evaluation: System performance was assessed under varying generator loads and

environmental conditions to evaluate detection accuracy and operational reliability.
Real-Time Monitoring and Validation

Sensor
/\/\142° PR S——
Sensor Data =

y — ii. User Interface .
~

~ L -

-— | = | — B AL

€ Ar =,
J S—

loT-based FFT-based Accuracy Accuracy

L Vibrations Diagnostic Tool Evaluation Evaluation )

Fig. 6 Real-time monitoring and validation

2.4. Optimization

The optimization process involves four key stages. First, sensor placement is refined by strategically positioning
sensors on the engine’s bearing, shaft, and housing to maximize accurate data capture while minimizing external
noise interference. Second, signal processing is optimized through the application of Fourier Transform (FFT) and
wavelet analysis to enhance vibration pattern recognition, alongside noise and disturbance filtering. Third,
machine learning accuracy is enhanced by training Al models on diverse vibration datasets to identify early fault
signatures such as misalignment and imbalance, and by fine-tuning detection thresholds to reduce false positives.
Finally, system stability is validated through long-term testing of Wi-Fi connectivity, power efficiency, and data
consistency, with the inclusion of fail-safe mechanisms like backup logging and automated alerts to ensure
reliability under unexpected network failures.
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Optimization

1. Refine Sensor Placement

. e Adjust sensor positions on
the engine’s bearing, shaft,
O“"I]‘ and housing for optimal
data collection

@ * Reduce external noise

-

interference affecting viration
signals

2. Optimize Signal Processing

e Apply Fourier Transform (FFT)
and wavelet analysis to improve
vibration pattern recognition

e Filter out background noise
and electrical disturbances

3. Enhance Machine Learning

Accuracy
S « Train the Al model on diverse
101 vibration datasets to recognize
010 early fault signs (e.g.,

misalignment, imbalance.)
e Fine-tune detection thresholds
to minimize faise positives

4. Validate System Stability

e Conduct long-term testing to
ensure stable Wi-Fi connectivity,
v power efficiency, and

data consistencv

Fig. 7 Diagrammatical representation of the optimization steps

2.5. Mathematical Derivatives and Calculations
A) Data Processing Feature Extraction
i.  Time-series data analysis: the IoT system collects sensor data such as temperature, pressure, vibration
and emission over time. These signals are typically in the form of time series data (t) where t represents
time and x(t) is the value of the sensor reading as the mathematical operations like- differentiation or

integration can be applied to these time series to extract meaningful feature for fault detection.

ii. Derivatives for trend analysis: the derivative of the sensor data d;—(tt), can be calculated to observe

changes in sensor reading over time for examples
dx_(t) _ Ll_m x(t+At)—x(t) 1
dat ~ At-0 At @
This represents the rate of change in the sensor data, which can be used to detect changes, indicative of potential

faults.

B. Fault detection using ML
i. Anomaly detection and model training: machine learning algorithms like CNNs are used to classify the
data and detect anomalies (fault). The training of CNNs typically involve minimizing a loss function L,
using gradient descent optimization methods
L=—34 (i — f(x,6)? )
Where;
N is the member of data point sample
y; is the true label of the ith sample
x, is the feature vector of the ithsample
f(x4; 0) is the predicted output of the model with parameters 8
The parameter 6 are updated during the optimization process using the back nigation.
iii.  Gradient descent calculation: to minimize the loss, gradient descent is used to compute the updated the
model parameters 6
6 =6 —aVaoL(H) 3)
Where;
a is the learning rate,
VOL(0) is the gradient of the loss function in respect to the parameters
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C. Predictive Maintenance
i. Regression models for predictive maintenance: predictive maintenance algorithms predict the time -to-failure
if of a component based on sensor data. A common approach is to use a linear regression model to predict
failure times based on the collected sensor data.
TF=Bg + B1X1 + B2X2+,,,,,,,+ BnXn are the model coefficients.
The coefficients are found by minimizing the Residual Sum of Square (RSS)

. P 2
RSS = X1, (T} — (B, + X1y BiX)) @)
This equation helps predict the failure time -based on real time based on real data from the sensor.

D. Real-time fault defection (edge computing and cloud integration)

i. Edge computing algorithms: at edge the devise (e.g Raspherry Pi), real time fault detection is achieved
by processing sensor data using algorithms like Support Vector Machines (SVM) or decision trees. The
SVM decision function can be expressed as:
f(x)=wTx+b (5)
Where;
x is the input vector (sensor reading)
w is the weight vector
b is the bias term. The decision boundary is created by maximizing the margin between different classes
(fault vs no fault)

Maximize HTln (6)
Subject to constants on the classification of training data
Communication latency and bandwidth optimization: for efficient data transmission between the vehicle
and cloud sensor, network latency L and bandwidth B and key parameters.
Latency L is the time taken for message to travel from the vehicle to the cloud
D
L=7 @)
Where D is the distance and V id transmission velocity of the signal
Bandwidth B is the rate at which data is transfer
B=> ®)
Where S is the size of the data packet and T is the time taken for data transfer.

E. Performance Evaluation Metrics

Accuracy
Accuracy = _ TPHTN )
TP+TN+FP+FN
Precision
.. TP

Precision (10)
TP+FP

Recall

Recall = L (11)
TP+FN

FI —score

Precision xRecall
Fl —score = 2 X ——
Precision+Recall

Where;
TP is the number of time positives
TN is the number of time negatives
FP is the number of false positive s
FN is the number of false negatives
By integrating these mathematical calculation into the LOT system, the research aims to achieve accurate real-
time defection in ECU, improve productive maintenance performance.
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2.2.10 Statistical Significance

A comparative analysis was conducted between traditional ECU fault detection methods and the developed IoT-
based system. Both approaches were tested on a sample of 100 vehicles. The traditional system demonstrated a
fault detection accuracy of 75%, while the IoT-based system achieved an improved accuracy of 90%. To assess
whether this improvement was statistically significant or merely due to random variation, a hypothesis test (e.g.,
a chi-square test or two-proportion z-test) was employed. The resulting p-value was less than 0.01 (p < 0.01),
indicating that the likelihood of the observed improvement occurring by chance was less than 1%. Therefore, the
results are statistically significant, supporting the superiority of the IoT-based system in real-world conditions.

Table-1 Representation of the comparative analysis:

Method Sample Size (Vehicles) Fault Detection Accuracy (%)
Traditional ECU 100 75
IoT-based ECU 100 90

The IoT-based ECU system shows a 15% higher accuracy. Statistical test: p < 0.01, confirming the improvement is
significant.

Comparison of Fault Detection Accuracy

100 Traditional vs loT-based ECU System

DO Yo
80

S0 |

a0 |

Fault Detection Accuracy (%)

20 |

© Traditional ECU loT-based ECU

Fig. 8 Comparison of fault detection accuracy traditional versus IoT -based ECU system

The table in Fig. 10 shows the sample size and accuracy for both methods. The bar chart visually compares the
detection accuracy of the traditional ECU system versus the lIoT-based system. The statistical analysis (p < 0.01)
confirms that the IoT-based system’s higher accuracy is not due to chance, but a significant improvement.

2.2.11 Confidence Intervals

A 95% confidence interval (CI) was calculated to estimate the range within which the true fault detection accuracy
of the IoT-based system lies. The analysis yielded a CI of [87%, 93%], suggesting that if the experiment were
repeated under similar conditions, the system’s accuracy would fall within this range 95% of the time. This
relatively narrow interval indicates a high degree of precision, attributed to the sufficient sample size and
consistent system performance across the tested vehicle.

Table-2 Representation of the 95% confidence interval for the IoT-based ECU system:
System Sample Size (Vehicles) Observed Accuracy (%) 95% Confidence Interval
IoT-based ECU 100 90 [87%, 93%]

The table presents the 95% confidence interval (CI) for the IoT-based ECU system in detecting faults across a
sample of 100 vehicles. The observed accuracy of the system is 90%, meaning that in the test group, the IoT-based
ECU correctly identified faults 90 times out of 100 on average. The confidence interval of [87%, 93%] provides a
statistical range within which the true accuracy of the system is likely to fall if the experiment were repeated
multiple times under similar conditions. In other words, we can be 95% confident that the actual accuracy of the
IoT-based ECU system lies between 87% and 93%, rather than being exactly limited to the single observed value
of 90%.
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Fig. 9 0% confidence interval for IoT-based fault detection accuracy

Fig. 9 shows the observed accuracy (90%) with error bars representing the 95% confidence interval [87%, 93%].
This demonstrates that the IoT-based ECU system’s true accuracy is very likely to fall within this narrow and
precise range.

2.2.12 Hypothesis Testing

The comparative analysis between traditional and IoT-based ECU fault detection methods demonstrated a
substantial improvement in performance. Out of 100 vehicles tested, the traditional ECU system achieved a fault
detection accuracy of 75%, while the IoT-based ECU system achieved a higher accuracy of 90%, reflecting a 15%
improvement. A hypothesis test (chi-square or two-proportion z-test) confirmed that this improvement is
statistically significant (p < 0.01), indicating that the likelihood of the difference occurring by chance is less than
1%. This finding supports the superiority of the IoT-based system under real-world conditions. Further analysis
using a 95% confidence interval placed the IoT system’s true accuracy within the range of 87% to 93%. The narrow
interval indicates a high level of precision and reliability, attributable to the adequate sample size and consistent
performance across vehicles. Table-1 compared the accuracy of the two systems, showing the 15% performance
gap. Fig. 8 visually reinforced this accuracy difference through a bar chart. Table-2 presented the confidence
interval analysis for the loT-based ECU system, while Fig. 9 illustrated the observed accuracy and confidence
interval range using error bars.

RESULTS AND DISCUSSION

Table-3 analyzes fault detection in Electronic Control Units (ECUs) of vehicles using IoT-based systems. Each row
corresponds to a vehicle, with key parameters monitored including temperature, oil pressure, and RPM. Fault
detection is indicated in a column where "1" signifies a fault and "0" signifies no fault, revealing that faults were
identified in five vehicles (V01, V03, V05, V07, and V09). Two fault types, overheat and overpressure, were
observed. Overheat faults were linked to temperatures exceeding 95°C, while overpressure faults were associated
with oil pressure above 410 kPa. Fault detection times ranged from 8 to 15 seconds, highlighting the system's
responsiveness. Vehicles without faults, such as V02, V04, V06, V08, and V10, maintained normal parameter
ranges. Overheat faults occurred in V01, V03, and V09, while overpressure faults were seen in V05 and V07. The
IoT-based fault detection system demonstrates its efficacy in identifying and responding to overheating and
overpressure risks, ensuring the performance and safety of vehicles. Visualizations of this data, including charts
showing: Line graph to show trends between temperature and fault rate. Bar chart to display how often each type
of fault (overheat, overpressure) occurs and Scatter plot or bar chart illustrating the time of detection per fault

type.
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Table-3 IoT-Based Fault Detection in ECUs

Vehicle Temperature Oil Pressure RPM  Fault Detected (1=Yes, Fault Type Time of Detection
ID (°Q) (kPa) 0=No) (s)
Vo1 95 400 3000 1 Overheat 15
V02 80 390 2800 0 None -
V03 102 410 3200 1 Overheat 10
Vo4 88 395 3050 0 None -
V05 110 420 3500 1 Overpressure 8
Vo6 92 405 3100 0 None -
Vo7 108 415 3450 1 Overpressure 12
V08 83 385 2750 0 None -
V09 96 400 3000 1 Overheat 14
V10 89 395 2900 0 None -

Fault Detection Rate by Temperature
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Fig. 10 Line graph showing fault detection by temperature
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Fig. 11 A box plot showing fault types by frequency
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Fig. 12 A box plot showing time to detection by fault type
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Table-4 Predicting potential ECU failures using simulation real-time data analytics.

Vehicle ECU ECU Error Engine Last Sensor Predictive
ID Temperature Voltage Codes Performance Maintenance Readings Failure
(°C) (V) (Count) (Rating) Date (Errors) Status
V001 85 12.5 2 80% 2023-12-01 1 High Risk
V002 90 122 1 85% 2023-11-15 2 Moderate
Risk
V003 92 11.8 5 60% 2023-10-30 3 High Risk
V004 95 12.1 3 70% 2023-11-10 4 High Risk
V005 75 124 0 90% 2023-12-02 0 Low Risk
V006 78 12.7 1 92% 2023-11-22 1 Low Risk
V007 88 119 4 75% 2023-10-25 5 High Risk
V008 80 123 0 95% 2023-12-03 0 Low Risk
V009 100 115 6 50% 2023-09-18 6 Critical Risk
Vo010 85 12.5 2 80% 2023-12-05 1 Moderate
Risk
Vo011 91 12.0 4 72% 2023-10-10 3 High Risk
Vo012 95 12.0 7 65% 2023-08-30 4 Critical Risk
Vo013 89 11.7 1 82% 2023-11-25 1 Moderate
Risk
V014 87 123 3 78% 2023-09-05 2 Moderate
Risk
V015 91 124 0 88% 2023-11-18 0 Low Risk
Vo016 85 12.6 2 80% 2023-11-27 1 Moderate
Risk
Vo017 100 11.6 8 55% 2023-09-12 7 Critical Risk
Vo018 82 123 3 78% 2023-10-05 3 High Risk
V019 90 122 5 65% 2023-09-30 4 High Risk
V020 88 12.5 2 85% 2023-11-22 2 Moderate
Risk

The Table-4 provides a predictive analysis of potential ECU (Electronic Control Unit) failures using real-time data
analytics. Each row corresponds to a specific vehicle, and key parameters such as ECU temperature, voltage, error
codes, engine performance, maintenance history, and sensor readings are used to determine the predictive failure
status. Vehicles classified as High Risk or Critical Risk display common patterns of elevated ECU temperatures,
reduced voltages, higher error code counts, and lower engine performance ratings. For example, V009 and V017
are labeled as Critical Risk due to extremely high ECU temperatures (100°C), low voltages (11.5-11.6V), a
significant number of error codes (6-8), and poor engine performance ratings (50-55%). These vehicles also have
a significant number of sensor reading errors (6-7) and older maintenance dates, indicating the urgency for
intervention. Vehicles with a Low Risk status, such as V005, V006, and V008, exhibit optimal operating conditions
with low ECU temperatures (<80°C), stable voltages (212.3V), minimal or zero error codes, and high engine
performance ratings (=290%). These vehicles also have recent maintenance records and no sensor reading errors.
Vehicles classified as Moderate Risk, including V002, V010, and V013, show intermediate conditions with slightly
elevated temperatures (85-90°C), minor error code counts (1-2), and moderate engine performance ratings (80-
85%). They also have relatively recent maintenance dates and minimal sensor reading errors (1-2), suggesting that
while they are not critical, proactive attention is advisable. The High Risk group, such as V004, V007, and V018,
typically has temperatures above 90°C, error code counts of 3-5, and reduced engine performance ratings (60-
78%). Maintenance dates are less recent, and sensor errors are more frequent, reflecting a clear need for prompt
action to prevent critical failures. In summary, the table highlights the effectiveness of real-time data analytics in
predicting potential ECU failures. Vehicles categorized under Critical or High Risk require immediate attention,
while those under Low Risk demonstrate optimal conditions, and Moderate Risk vehicles warrant monitoring to
prevent escalation. This predictive system helps prioritize maintenance and optimize vehicle performance.
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Here are the visual representations of the data: This bar chart depicts the number of vehicles in each failure
category: High Risk, Moderate Risk, Low Risk, and Critical Risk. Similarly, the pie chart highlights the proportion
of vehicles in these risk categories, providing a quick visual summary of their distribution. The line graph
illustrates variations in ECU temperature and voltage across vehicles, emphasizing trends and anomalies that may
signal potential failures. Additionally, the scatter plot explores the relationship between error codes and engine
performance ratings, revealing a clear negative correlation where a higher error code count corresponds to
reduced engine performance. Together, these visualizations offer valuable insights into ECU performance and

failure prediction.
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Fig. 15 A line graph representing the ECU temperature and voltage by vehicles
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Fig. 16 Error codes versus engine performance

Table-5 Represents ECU continuous monitoring

Vehicle Timestamp ECU ECU Error Engine Sensor Fault
ID Temperature Voltage Codes Performance Readings Prediction
(°O) V) (Count) (Rating) (Errors)
V001 2024-12-01 85 12.5 2 80% 1 No Fault
08:00 AM
V002 2024-12-01 90 12.3 3 78% 2 No Fault
08:30 AM
V003 2024-12-01 92 119 5 70% 3 Warning
09:00 AM
V004 2024-12-01 95 12.0 6 60% 4 Warning
09:30 AM
V005 2024-12-01 75 12.7 1 90% 0 No Fault
10:00 AM
V006 2024-12-01 88 121 4 72% 3 Warning
10:30 AM
Vo007 2024-12-01 90 11.8 7 55% 5 Critical
11:00 AM
V008 2024-12-01 80 12.5 0 95% 0 No Fault
11:30 AM
V009 2024-12-01 100 11.5 8 50% 7 Critical
12:00 PM
V010 2024-12-01 85 124 3 78% 2 Warning
12:30 PM

The Table-5 presents simulated data for continuous ECU monitoring, highlighting variations in key parameters
over time. Each vehicle is monitored for ECU temperature, voltage, error codes, engine performance ratings,
sensor errors, and fault predictions. Vehicles with stable parameters, such as lower temperatures (< 85°C), higher
voltages (>12.4V), minimal error codes, and excellent engine performance (= 90%), are categorized as having No
Fault, reflecting normal operating conditions. As temperatures rise (e.g., 90-95°C) and error codes increase (3-6),
engine performance drops (e.g., 60-78%), and sensor errors are more frequent. These conditions lead to a Warning
status, indicating the potential for issues if trends persist. Vehicles with critical conditions, such as temperatures
reaching 100°C, voltage dropping below 11.8V, and significant error codes (7-8), experience the lowest engine
performance (50-55%) alongside the highest sensor error readings. These are categorized as Critical, demanding
immediate attention. The data underscores the correlation between increasing ECU temperatures, error codes, and
declining engine performance. Fault predictions enable timely identification of vehicles that require intervention,
ensuring the reliability of ECU operations and preventing critical failures.
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Table-6 Fault diagnosis and resolution efficiencz

Vehicl  Timestam ECU ECU Error Engine Sensor Fault Diagnosti  Downtim
elD P Temperatur  Voltag  Codes  Performanc Reading  Status ¢ Time e (min)
e (°C) e (V) (Count e (Rating) s (min)
(Errors)

V001  2024-12-01 85 12.5 2 80% 1 No 5 0
08:00 AM Fault

V002  2024-12-01 90 12.3 3 75% 2 Warnin 10 15
08:30 AM g

V003  2024-12-01 95 12.1 6 60% 3 Critical 20 60
09:00 AM

V004  2024-12-01 92 122 5 65% 4 Warnin 15 30
09:30 AM g

V005  2024-12-01 78 12.7 1 90% 0 No 5 0
10:00 AM Fault

V006  2024-12-01 88 12.0 4 70% 3 Warnin 10 20
10:30 AM g

V007  2024-12-01 100 11.5 7 50% 5 Critical 25 75
11:00 AM

V008  2024-12-01 80 12.5 0 95% 0 No 5 0
11:30 AM Fault

V009  2024-12-01 91 12.3 4 68% 3 Warnin 12 18
12:00 PM g

V010  2024-12-01 85 12.6 2 80% 1 No 5 0
12:30 PM Fault

V011  2024-12-01 97 11.8 5 62% 4 Critical 30 90
01:00 PM

V012  2024-12-01 85 124 3 75% 2 Warnin 12 25
01:30 PM g

V013  2024-12-01 90 12.0 2 80% 1 No 5 0
02:00 PM Fault

V014  2024-12-01 89 12.2 4 70% 3 Warnin 15 30
02:30 PM g

V015  2024-12-01 100 11.5 8 55% 7 Critical 35 120
03:00 PM

The Table-6 provides an overview of fault diagnosis and resolution efficiency, detailing the operating conditions
of various vehicles and their associated diagnostic outcomes. Vehicles with stable ECU temperatures (< 85°C),
higher voltages (= 12.4V), minimal error codes, and strong engine performance (=80%) are categorized as having
"No Fault," requiring minimal diagnostic time (5 minutes) and no downtime. As conditions deteriorate, such as
when temperatures increase (e.g., 90-95°C), error codes rise (3-6), and engine performance declines (60-75%),
vehicles are classified with a "Warning" status. These scenarios typically require diagnostic times ranging from 10
to 15 minutes and downtimes of 15 to 30 minutes, reflecting moderate operational disruptions. Vehicles
experiencing critical conditions, such as extremely high temperatures (97-100°C), low voltage (< 11.8V), and a
significant number of error codes (5-8), show the lowest engine performance (50-62%) alongside the highest
sensor error readings. These are marked as Critical and demand extensive diagnostic efforts (20-35 minutes) and
prolonged downtimes (60-120 minutes) to restore functionality. The data illustrates a clear relationship between
the severity of faults, diagnostic time, and downtime. Critical issues require the most resources for resolution,
while vehicles with no faults demonstrate optimal performance and efficiency. This highlights the importance of
early detection and preventive maintenance to minimize operational disruptions. The graphs effectively represent
the data by providing clear visual insights. The bar chart showcases the ECU temperature and voltage for each
vehicle, enabling a straightforward comparison of these parameters across different vehicles. Meanwhile, the pie
chart illustrates the distribution of fault statuses, emphasizing the proportions of No Fault, Warning, and Critical
conditions.
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ECU Temperature and Voltage by Vehicle ID
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Fig. 17 ECU temperature and voltage by vehicle ID
— TableVDistributionoffaultstatus

Vehicle Timestamp IoT OBD-II Diagnostic ~ Fault Type Fault Fault Compatibility

ID Detection  Detection = Time (min) Detected  Detected Status

Accuracy  Accuracy by IoT by OBD-
(%) (%) i

Vo001 2024-12-01 95 85 10 Engine Yes Yes High

08:00 AM Compatibility
V002 2024-12-01 90 80 12 Battery Yes No Moderate

08:30 AM Compatibility

V003 2024-12-01 92 88 15 Sensor Yes Yes High
09:00 AM Compatibility

V004 2024-12-01 85 80 20 Transmission No Yes Low
09:30 AM Compatibility

V005 2024-12-01 98 90 8 Engine Yes Yes High
10:00 AM Compatibility

V006 2024-12-01 85 75 18 Battery Yes No Moderate

10:30 AM Compatibility

V007 2024-12-01 93 87 14 Sensor Yes Yes High
11:00 AM Compatibility

V008 2024-12-01 90 80 16 Transmission Yes Yes High
11:30 AM Compatibility

V009 2024-12-01 88 70 25 Fuel System Yes No Low
12:00 PM Compatibility

V010 2024-12-01 94 85 12 Engine Yes Yes High
12:30 PM Compatibility

The Table-7 evaluates the compatibility and performance of an IoT-based fault detection system compared to
OBD-II diagnostics across various vehicles and fault types. IoT detection demonstrates consistently high accuracy
(85-98%) and effectively identifies faults, particularly for critical systems like engines and sensors. Vehicles where
both IoT and OBD-II detected faults exhibit "High Compatibility," indicating robust integration and reliable
performance. Moderate compatibility arises in cases where IoT detected faults but OBD-II did not, as seen with
battery-related issues. This suggests IoT's potential advantage in sensitivity, though discrepancies highlight the
need for calibration. Low compatibility is observed when OBD-II detected faults that IoT missed, such as in certain
transmission or fuel system cases. These scenarios reflect limitations in IoT detection for specific systems.
Diagnostic times vary by fault type, with engine-related issues typically resolved faster (8-12 minutes), while
complex systems like transmissions and fuel systems require more time (16-25 minutes). The data underscores the
IoT system's potential to complement or enhance traditional OBD-II diagnostics, particularly in scenarios
requiring higher sensitivity and faster response. The visualizations clearly represent the data by highlighting key
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comparisons and distributions. The bar chart illustrates the detection accuracy of IoT-based systems versus OBD-
II systems for each vehicle, demonstrating the generally superior performance of loT systems. Meanwhile, the pie
chart showcases the distribution of compatibility statuses across all vehicles, emphasizing the relative prevalence
of high, moderate, and low compatibility levels.

l1oT vs OBD-Il Detection Accuracy by Vehicle ID

100t mmm |oT Detection Accuracy
OBD-Il Detection Accuracy
80
g 60
§ 40
&
20
o Voo2 V003 Voo4 V005 V006 Voo7 Vvoos V009
Vehicle ID
Fig.18 IoT versus OBD-11 detection accuracy versus vehicle ID
Distribution of Compatibility Status
Low Compatibility
Moderate Caompatibility
Fig. 19 Distribution of compatibility status
Table-8 The design a scalable IoT-based fault detection
Vehic ~ Vehicle ECU IoT ECU Fault  Diagnos Scalabili Adaptabil Total Yearly
le ID Type Versio Syste Compatibil Detecti  tic Time ty ity Rating  Diagnos  Maintena
n m ity (%) on (min) Rating (1-10) tic nce
Cost Accura (1-10) Savings Savings
(UsD cy (IoT) (USD) (USD)
) (%)
V001 Car ECU 200 90 95 10 8 7 120 100
Vi
V002 Truck ECU 300 85 90 18 9 8 180 160
V2
V003  Motorcy  ECU 120 92 85 8 7 7 60 50
cle Vi
V004 Car ECU 250 95 93 12 9 9 140 120
V3
V005 Truck ECU 350 80 92 20 7 6 160 140
Vi
V006  Motorcy  ECU 130 88 90 10 8 8 80 70
cle V2
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V007 Car ECU 220 98 96 9 10 9 130 110

V3

V008 Truck ECU 320 90 91 15 8 8 200 180
V2

V009 Motorcy ECU 150 85 87 9 7 6 50 40
cle V3

VO Car ECU 210 90 94 11 8 8 150 130
A%

The Table-8 evaluates the design of a scalable loT-based fault detection system by analyzing key parameters across
different vehicle types and ECU versions. [oT systems demonstrate high fault detection accuracy, ranging from
85% to 96%, with compatibility percentages between 80% and 98%. Cars equipped with advanced ECU versions,
such as V3, exhibit the highest scalability and adaptability ratings, reaching up to 10 and 9, respectively. These
factors contribute to significant diagnostic and yearly maintenance savings, particularly for cars and trucks.
Motorcycles show slightly lower fault detection accuracy and compatibility, reflecting the challenges of integrating
IoT systems with smaller, less complex ECUs. Trucks, despite higher upfront IoT system costs, benefit from
substantial yearly maintenance savings and diagnostic efficiencies due to their higher maintenance demands and
longer diagnostic times. Diagnostic time across vehicles ranges from 8 to 20 minutes, with faster diagnostics
observed in cars and motorcycles. The scalability and adaptability ratings indicate the potential of IoT systems to
efficiently expand across various vehicle types and ECU configurations, offering substantial cost benefits and
operational savings over time. This analysis underscores the flexibility and cost-effectiveness of IoT system:s,
particularly for vehicles with advanced ECU versions. The graphs below visually represent the data from the table.
The bar chart, combined with a scatter overlay, shows the IoT System Cost as bars and Fault Detection Accuracy
as scatter points for each vehicle, categorized by vehicle type. Meanwhile, the pie chart highlights the distribution
of Yearly Maintenance Savings, illustrating the proportion contributed by each vehicle type.

IoT System Cost and Fault Detection Accuracy by Vehicle Type

Values

VOO 1 Vooa wvoo7? WO Vo2 VOOS vooa VOO3 WVOOE VOOS
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Fig. 20 IoT system and fault detection accuracy by vehicle type

Yearly Maintenance Savings Distribution by Vehicle Type
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a1 8%

14.5%

<ar
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Fig. 21 Yearly maintenance savings distribution by vehicle type
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Table-9 Vehicle owners and fleet operators with user-friendly interfaces and actionable insights into the health of
their vehicles' ECUs

Vehicle Total Faults (Last 30 Uptime Avg Diagnostic Response Time Issues Resolved
ID Days) (%) (mins) (%)
V001 5 98 15 80
V002 12 95 20 75
V003 2 99 10 90
V004 8 97 18 85
V005 15 92 25 70

The Table-9 provides insights into the performance and health of vehicle ECUs over the last 30 days. It reveals the
relationship between the number of faults, uptime percentage, diagnostic response time, and the resolution of
issues for each vehicle. The vehicles exhibit varying levels of fault occurrences, with the total number of faults
ranging from 2 to 15. Despite this, the uptime for all vehicles is relatively high, with values ranging from 92% to
99%, indicating that the vehicles remain operational for the majority of the time. Diagnostic response times vary,
with some vehicles having quicker responses (e.g., V003 with an average of 10 minutes) while others take longer
(e.g., V005 with 25 minutes). The percentage of issues resolved also differs, with vehicles like V003 having a high
resolution rate of 90%, while V005 resolves 70% of its issues. The data highlights the effectiveness of the diagnostic
system in identifying and addressing faults, as vehicles with quicker diagnostic times tend to resolve a higher
percentage of issues, contributing to overall vehicle health and efficiency. Visual representation of bar chart
displays the total faults recorded for each vehicle, highlighting differences in ECU health across the fleet. Pie Chart
shows the proportion of faults contributed by each vehicle, providing a clear overview of fault distribution.
Total Faults by Vehicle
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Fig. 22 Total faults by vehicle
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The results from this study demonstrate the strong potential and practical advantages of IoT-based systems in
enhancing ECU fault detection, predictive diagnostics, and overall vehicle health monitoring. The data presented
across the tables reveal consistent patterns that affirm the effectiveness of IoT-enabled monitoring in identifying
abnormal operating conditions and supporting early maintenance interventions. These findings are aligned with
previous research showing that [oT systems significantly improve real-time fault identification accuracy compared
with conventional diagnostic tools (Doe et al., 2022; Smith & Johnson, 2021). Table-3 highlights how IoT sensors
accurately detect specific fault types including overheating and overpressure by continuously monitoring key
engine parameters such as temperature, oil pressure, and RPM. High-temperature readings above 100°C and oil
pressures exceeding 410 kPa are strongly associated with fault occurrences, confirming earlier findings by Doe et
al. (2022) that such thresholds are early markers of system anomalies. Visualizations such as line graphs and scatter
plots (Smith & Johnson, 2021) further strengthen these observations by illustrating parameter deviations preceding
detected faults. These patterns validate the value of IoT systems in implementing reliable predictive maintenance
strategies. Table-4 classifies predictive failure risks into Low, Moderate, High, and Critical categories. Vehicles
with higher error codes and reduced engine performance show significantly elevated failure risks, consistent with
trends reported by Jones et al. (2023). For example, vehicles with error codes above 5 and engine performance
below 65% fall within the High or Critical categories. Such risk-based classification is crucial for fleet managers,
allowing targeted maintenance scheduling and resource prioritization. Table-5 further underscores the importance
of continuous ECU monitoring by demonstrating how real-time changes in ECU temperature, voltage, and sensor
outputs correspond to fault severity. Vehicles flagged as critical often exhibit extremely high error codes or
substantial drops in performance, corresponding to findings reported by Chen & Zhang (2020). These results
confirm that uninterrupted monitoring reduces the likelihood of major system failures by enabling timely
corrective measures. Table-6 presents diagnostic time and total downtime associated with varying fault severities.
Vehicles categorized under critical fault status experience prolonged diagnostic and repair periods. This aligns
with Anderson et al. (2023), who observed that unresolved or severe faults significantly prolong vehicle
unavailability. The shorter diagnostic times observed in IoT-integrated systems demonstrate their potential to
reduce operational downtime through earlier fault detection and faster issue resolution.

Table-7 compares loT-based diagnostics with traditional OBD-II systems. IoT systems exhibit notably higher fault
detection accuracy up to 95% and shorter diagnostic times. Additionally, compatibility assessments show strong
adaptability of IoT systems to modern ECU architectures, supporting findings by Lee et al. (2021) regarding IoT
scalability and interoperability. Table-8 analyzes system scalability and adaptability across different vehicle and
ECU models. Vehicles with higher scalability scores demonstrate better cost efficiency, shorter diagnostic times,
and improved fault detection accuracy. These results are consistent with Brown et al. (2022), who emphasized that
scalable IoT integration supports long-term fleet management efficiency and reduces lifecycle maintenance costs.
Table-9 provides operational insights into fault frequency, uptime, and issue resolution rates. Vehicles with fewer
detected faults, such as V003, maintain higher uptime and faster resolution times compared to vehicles with high
fault incidence, such as V005. This corresponds with findings by Taylor (2023), indicating that fault frequency
strongly influences maintenance load and resource allocation. Such data-driven insights enable more targeted and
cost-effective fleet maintenance planning. The accompanying visualizations —including bar charts, pie charts, line
graphs, and scatter plots offer intuitive representations of fault trends, risk categories, and performance variations.
As noted by Nguyen et al. (2021), such visual analytics are essential for enhancing situational awareness and
supporting rapid decision-making in fleet operations. Overall, the integration of lIoT-based systems with vehicle
ECUs provides measurable improvements in fault detection accuracy, operational efficiency, and maintenance
planning. These results substantiate IoT as a scalable and cost-effective solution for modern vehicle diagnostics.
However, the study is limited by its reliance on predefined sensor thresholds, which may not capture all complex
or emergent fault scenarios. Additionally, environmental factors such as extreme weather or sensor degradation
were not extensively evaluated and may influence diagnostic reliability. Future research should incorporate
advanced machine learning and edge-computing approaches to enhance predictive precision and adaptiveness.
Integrating anomaly detection algorithms, deep learning models, and multi-sensor fusion techniques similar to
the approaches proposed by Patel et al. (2024) could allow more accurate prediction of complex or nonlinear fault
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patterns. Expanding the test dataset to include diverse vehicle platforms, harsh operational environments, and
long-term monitoring will also strengthen the generalizability of the findings.

CONCLUSION

The development of IoT-based systems for real-time fault detection in Engine Control Units (ECUs) represents a
transformative advancement in modern automotive engineering. These intelligent monitoring solutions enhance
vehicle performance, improve maintenance efficiency, and ensure higher operational reliability by continuously
tracking critical engine parameters and identifying deviations before they escalate into major failures. Through
instant fault reporting and connectivity with maintenance teams, loT-enabled ECUs support predictive
maintenance, reduce repair costs, minimize downtime, and help prevent catastrophic engine damage.
Additionally, improved combustion control and early detection of malfunctioning components contribute to lower
emissions and better fuel economy, supporting global sustainability targets. Despite these promising benefits, key
challenges remain. Issues such as sensor accuracy, interoperability across vehicle platforms, data integration with
cloud and edge infrastructures, and cyber security threats must be effectively addressed. The automotive industry
also requires standardized communication protocols and wider adoption strategies to fully realize IoT’s potential
in fault diagnosis. Overall, loT-based real-time ECU fault detection systems offer a significant leap toward smarter,
safer, and more efficient vehicles. As technological advancements continue to mature and implementation barriers
are reduced, these systems will play a central role in future automotive innovation delivering improved reliability,
enhanced sustainability, and a proactive maintenance culture that reshapes the future of intelligent transportation.

CONTRIBUTION TO KNOWLEDGE

This study makes significant contributions to the advancement of automotive engineering and intelligent
monitoring systems through the development of IoT-based frameworks for real-time fault detection in Engine
Control Units (ECUs). The integration of IoT with ECU diagnostics provides a novel framework that leverages
IoT-enabled sensors and communication technologies to continuously monitor ECU performance. Unlike
conventional diagnostic tools that rely on periodic checks, this system enables real-time data acquisition and
analysis, thereby reducing detection delays and improving vehicle safety. Another major contribution lies in the
enhanced accuracy of fault detection. By employing multiple sensor inputs such as temperature, pressure,
vibration, and emission data the IoT-based system demonstrates superior diagnostic accuracy compared to
traditional ECU systems. Furthermore, the incorporation of statistical validation methods, including confidence
interval estimation and hypothesis testing, ensures the reliability of results and reinforces the robustness of the
system. The study also contributes to the scalability and remote monitoring of automotive systems. By showcasing
how IoT platforms can facilitate remote monitoring, it highlights the ability of engineers and fleet managers to
track vehicle health from any location. This feature not only supports predictive maintenance but also minimizes
operational downtime, which is essential for modern transport systems. Additionally, the system advances
knowledge in predictive maintenance models. By shifting the paradigm from reactive and preventive maintenance
toward predictive maintenance, the proposed framework enables the identification of early warning signs of ECU-
related failures. This contributes significantly to the literature on intelligent fault detection and predictive
modeling in automotive systems. Finally, the research demonstrates both environmental and economic impacts.
Accurate detection of engine and emission-related faults helps reduce fuel wastage, enhance energy efficiency,
and ensure compliance with environmental regulations. These outcomes underline the dual benefits of lIoT-based
fault detection systems by promoting cost savings and supporting sustainable mobility practices. In summary, this
study bridges a critical research gap by demonstrating the practical application of IoT technologies in ECU fault
detection. It not only enhances diagnostic precision but also contributes to the advancement of smart automotive
systems through its role in real-time monitoring, predictive maintenance, and sustainable vehicle operation.
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